論文の概要: Fault Handling in Large Water Networks with Online Dictionary Learning
- arxiv url: http://arxiv.org/abs/2003.08483v2
- Date: Mon, 7 Sep 2020 14:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 13:25:32.473197
- Title: Fault Handling in Large Water Networks with Online Dictionary Learning
- Title(参考訳): オンライン辞書学習による大規模水道網の故障処理
- Authors: Paul Irofti and Florin Stoican and Vicen\c{c} Puig
- Abstract要約: ここでは、センサ配置を行う際にネットワークトポロジを考慮に入れたデータ駆動の代替手段を提供することで、モデルを単純化する。
オンライン学習は高速で、一度に小さな信号のバッチを処理するため、大きなネットワークに取り組むことができる。
このアルゴリズムは、小規模ネットワークと大規模ネットワークの両方でテストした場合、優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fault detection and isolation in water distribution networks is an active
topic due to its model's mathematical complexity and increased data
availability through sensor placement. Here we simplify the model by offering a
data driven alternative that takes the network topology into account when
performing sensor placement and then proceeds to build a network model through
online dictionary learning based on the incoming sensor data. Online learning
is fast and allows tackling large networks as it processes small batches of
signals at a time and has the benefit of continuous integration of new data
into the existing network model, be it in the beginning for training or in
production when new data samples are encountered. The algorithms show good
performance when tested on both small and large-scale networks.
- Abstract(参考訳): 水分配ネットワークにおける故障検出と隔離は、そのモデルの数学的複雑さとセンサ配置によるデータ可用性の向上により活発なトピックである。
ここでは,センサ配置を行う際のネットワークトポロジを考慮したデータ駆動型代替案を提供し,入力したセンサデータに基づくオンライン辞書学習を通じてネットワークモデルを構築することにより,モデルを単純化する。
オンライン学習は高速で、大規模なネットワークに取り組み、一度に小さな信号のバッチを処理し、新しいデータを既存のネットワークモデルに連続的に統合するメリットがある。
アルゴリズムは、小規模ネットワークと大規模ネットワークの両方でテストした場合、優れたパフォーマンスを示す。
関連論文リスト
- NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
我々は,NetFlowレコードからのトラフィックデータのみを用いて,トラフィックダイナミクスをキャプチャする汎用機械学習モデルを事前学習することを提案する。
ネットワーク特徴表現の統一,未ラベルの大規模トラフィックデータ量からの学習,DDoS攻撃検出における下流タスクのテストといった課題に対処する。
論文 参考訳(メタデータ) (2024-12-30T00:47:49Z) - Multi-Scale Convolutional LSTM with Transfer Learning for Anomaly Detection in Cellular Networks [1.1432909951914676]
本研究では,トランスファーラーニング(TL)を用いたマルチスケール畳み込みLSTMによるセルネットワークの異常検出手法を提案する。
モデルは最初、公開データセットを使用してスクラッチからトレーニングされ、典型的なネットワーク動作を学習する。
我々は,スクラッチから訓練したモデルの性能と,TLを用いた微調整モデルの性能を比較した。
論文 参考訳(メタデータ) (2024-09-30T17:51:54Z) - Sampling weights of deep neural networks [1.2370077627846041]
完全に接続されたニューラルネットワークの重みとバイアスに対して,効率的なサンプリングアルゴリズムと組み合わせた確率分布を導入する。
教師付き学習環境では、内部ネットワークパラメータの反復最適化や勾配計算は不要である。
サンプルネットワークが普遍近似器であることを証明する。
論文 参考訳(メタデータ) (2023-06-29T10:13:36Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
我々は、効率的なネットワーク異常検出を可能にする堅牢でスケーラブルなフレームワークを導入する。
複数の参加者が共同でグローバルモデルをトレーニングするフェデレーション学習を活用します。
提案手法はUNSW-NB15データセットのベースライン機械学習手法よりも優れている。
論文 参考訳(メタデータ) (2023-03-13T20:16:30Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Transfer Learning via Test-Time Neural Networks Aggregation [11.42582922543676]
ディープニューラルネットワークが従来の機械学習より優れていることが示されている。
ディープ・ネットワークは一般性に欠けており、異なる分布から引き出された新しい(テスト)セットでは性能が良くない。
論文 参考訳(メタデータ) (2022-06-27T15:46:05Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Intrusion detection in computer systems by using artificial neural
networks with Deep Learning approaches [0.0]
コンピュータネットワークへの侵入検知は、サイバーセキュリティにおける最も重要な問題の1つとなっている。
本稿では,ディープラーニングアーキテクチャに基づく侵入検知システムの設計と実装に焦点を当てる。
論文 参考訳(メタデータ) (2020-12-15T19:12:23Z) - Towards Accurate Quantization and Pruning via Data-free Knowledge
Transfer [61.85316480370141]
我々は、訓練された大規模ネットワークからコンパクトネットワークへの知識の伝達により、データフリーな量子化とプルーニングを研究する。
データフリーなコンパクトネットワークは、トレーニングデータで訓練され、微調整されたネットワークに対して、競争精度を達成する。
論文 参考訳(メタデータ) (2020-10-14T18:02:55Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。