Bipartite Link Prediction based on Topological Features via 2-hop Path
- URL: http://arxiv.org/abs/2003.08572v1
- Date: Thu, 19 Mar 2020 05:07:54 GMT
- Title: Bipartite Link Prediction based on Topological Features via 2-hop Path
- Authors: Jungwoon Shin
- Abstract summary: Linear-Graph Autoencoder(LGAE) has promising performance on challenging tasks such as link prediction and node clustering.
In this paper, we consider the case of bipartite link predictions where node attributes are unavailable.
Our approach consistently outperforms Graph Autoencoder and Linear Graph Autoencoder model in 10 out of 12 bipartite dataset and reaches competitive performances in 2 other bipartite dataset.
- Score: 0.8223798883838329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A variety of real-world systems can be modeled as bipartite networks. One of
the most powerful and simple link prediction methods is Linear-Graph
Autoencoder(LGAE) which has promising performance on challenging tasks such as
link prediction and node clustering. LGAE relies on simple linear model w.r.t.
the adjacency matrix of the graph to learn vector space representations of
nodes. In this paper, we consider the case of bipartite link predictions where
node attributes are unavailable. When using LGAE, we propose to multiply the
reconstructed adjacency matrix with a symmetrically normalized training
adjacency matrix. As a result, 2-hop paths are formed which we use as the
predicted adjacency matrix to evaluate the performance of our model.
Experimental results on both synthetic and real-world dataset show our approach
consistently outperforms Graph Autoencoder and Linear Graph Autoencoder model
in 10 out of 12 bipartite dataset and reaches competitive performances in 2
other bipartite dataset.
Related papers
- You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace.
Our experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts.
arXiv Detail & Related papers (2024-04-17T02:52:11Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold.
The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level.
arXiv Detail & Related papers (2022-05-30T12:56:24Z) - uGLAD: Sparse graph recovery by optimizing deep unrolled networks [11.48281545083889]
We present a novel technique to perform sparse graph recovery by optimizing deep unrolled networks.
Our model, uGLAD, builds upon and extends the state-of-the-art model GLAD to the unsupervised setting.
We evaluate model results on synthetic Gaussian data, non-Gaussian data generated from Gene Regulatory Networks, and present a case study in anaerobic digestion.
arXiv Detail & Related papers (2022-05-23T20:20:27Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
We introduce the Graph Sylvester Embedding (GSE), an unsupervised graph representation of local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation to capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2022-05-07T04:11:23Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.