論文の概要: Train Scheduling with Hybrid Answer Set Programming
- arxiv url: http://arxiv.org/abs/2003.08598v1
- Date: Thu, 19 Mar 2020 06:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 04:14:54.515901
- Title: Train Scheduling with Hybrid Answer Set Programming
- Title(参考訳): ハイブリッドアンサーセットプログラミングによる列車スケジューリング
- Authors: Dirk Abels, Julian Jordi, Max Ostrowski, Torsten Schaub, Ambra
Toletti, and Philipp Wanko
- Abstract要約: ASP(Answer Set Programming)に基づく実世界の列車スケジューリング問題の解法を提案する。
要求される計画とスケジューリングの問題に対処するために、ハイブリッドASPシステムclingo[DL]がどのように使用できるのかを例に示す。
- 参考スコア(独自算出の注目度): 1.4823899140444556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a solution to real-world train scheduling problems, involving
routing, scheduling, and optimization, based on Answer Set Programming (ASP).
To this end, we pursue a hybrid approach that extends ASP with difference
constraints to account for a fine-grained timing. More precisely, we
exemplarily show how the hybrid ASP system clingo[DL] can be used to tackle
demanding planning-and-scheduling problems. In particular, we investigate how
to boost performance by combining distinct ASP solving techniques, such as
approximations and heuristics, with preprocessing and encoding techniques for
tackling large-scale, real-world train scheduling instances. Under
consideration in Theory and Practice of Logic Programming (TPLP)
- Abstract(参考訳): 本稿では,解集合プログラミング(asp)に基づくルーティング,スケジューリング,最適化を含む実世界の列車スケジューリング問題の解法を提案する。
この目的のために、我々は、微粒なタイミングを考慮に入れた差分制約でASPを拡張するハイブリッドアプローチを追求している。
より正確には、要求される計画とスケジューリングの問題に対処するために、ハイブリッドASPシステムclingo[DL]がどのように使用できるかを示す。
特に,大規模な実世界の列車スケジューリングインスタンスに取り組むためのプリプロセッシングとエンコーディング技術を用いて,近似やヒューリスティックスといった異なるasp解決手法を組み合わせることで,パフォーマンスを向上させる方法について検討する。
論理プログラミング(tplp)の理論と実践に関する考察
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
本稿では,複雑な制約を伴う最適化問題に対して,新しいオフラインRL法を提案する。
我々のアプローチは、エッジ属性のアクションを符号化し、専門家ソリューションの模倣と期待される報酬のバランスをとる。
本手法がジョブショップスケジューリングおよびフレキシブルジョブショップスケジューリングベンチマークに与える影響を実証する。
論文 参考訳(メタデータ) (2024-10-21T07:33:42Z) - Differentiable Combinatorial Scheduling at Scale [18.09256072039255]
本稿では,Gumbel-Softmax微分可能なサンプリング手法を用いて,微分可能なスケジューリングフレームワークを提案する。
スケジューリングタスクの不等式制約をエンコードするために,任意の不等式制約を積極的にエンコードするテキスト制約付きGumbel Trickを導入する。
本手法は, トレーニングデータを必要とせずに, 勾配降下による効率よく, スケーラブルなスケジューリングを容易にする。
論文 参考訳(メタデータ) (2024-06-06T02:09:39Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
本研究の目的は、最適化問題に対処する機械学習(ML)を用いた革新的なアプローチを開発することである。
1) 粗粒スケジューラとしての解法, 2) 解緩和, 3) ILPによる正確な解法の3つのステップを含む新しい2段階のRL-to-ILPスケジューリングフレームワークを導入する。
提案フレームワークは, 正確なスケジューリング手法と比較して, 最大128ドルの高速化を実現しつつ, 同一のスケジューリング性能を示す。
論文 参考訳(メタデータ) (2023-08-19T15:52:43Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
本稿では、フレキシブルジョブショップスケジューリング問題(DRC-FJSSP)に深層強化学習(DRL)を適用したメメティックアルゴリズムを提案する。
産業における研究プロジェクトから、フレキシブルマシン、フレキシブルなヒューマンワーカー、作業能力、セットアップと処理操作、材料到着時間、材料製造の請求書の並列タスク、シーケンス依存のセットアップ時間、人間と機械のコラボレーションにおける(一部)自動化タスクを検討する必要性を認識します。
論文 参考訳(メタデータ) (2022-12-21T11:24:32Z) - Answer-Set Programming for Lexicographical Makespan Optimisation in
Parallel Machine Scheduling [18.286430978487388]
我々は、シーケンス依存のセットアップ時間とリリース日を持つ並列マシン上で、困難なスケジューリング問題に対処する。
個々のマシンを非到達順に配置し、結果として生じるロバスト性を語彙的に最小化する。
実験の結果,ASPは実際にこの問題に対して有望なKRRパラダイムであり,最先端のCPおよびMIPソルバと競合していることがわかった。
論文 参考訳(メタデータ) (2022-12-18T12:43:24Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。