論文の概要: Experimental Comparison of Semi-parametric, Parametric, and Machine
Learning Models for Time-to-Event Analysis Through the Concordance Index
- arxiv url: http://arxiv.org/abs/2003.08820v1
- Date: Fri, 13 Mar 2020 07:18:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 01:12:44.756504
- Title: Experimental Comparison of Semi-parametric, Parametric, and Machine
Learning Models for Time-to-Event Analysis Through the Concordance Index
- Title(参考訳): 一致指数を用いた時間-事象分析のための半パラメトリック・パラメトリック・機械学習モデルの比較
- Authors: Camila Fernandez (LINCS), Chung Shue Chen (LINCS), Pierre Gaillard
(SIERRA), Alonso Silva
- Abstract要約: 半パラメトリック(コックス比例ハザードモデル、アーレンの付加回帰モデル)、パラメトリック(ワイブルAFTモデル)、機械学習モデル(ランドムサバイバルフォレスト、コックス比例ハザードロスによるグラディエントブースティング、ディープサーブ)を実験的に比較する。
- 参考スコア(独自算出の注目度): 1.5749416770494706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we make an experimental comparison of semi-parametric (Cox
proportional hazards model, Aalen's additive regression model), parametric
(Weibull AFT model), and machine learning models (Random Survival Forest,
Gradient Boosting with Cox Proportional Hazards Loss, DeepSurv) through the
concordance index on two different datasets (PBC and GBCSG2). We present two
comparisons: one with the default hyper-parameters of these models and one with
the best hyper-parameters found by randomized search.
- Abstract(参考訳): 本稿では,2つの異なるデータセット(pbc,gbcsg2)のコンコダンスインデックスを用いて,半パラメトリック(cox比例ハザードモデル,aalenの加法回帰モデル),パラメトリック(weibull aftモデル),機械学習モデル(random survival forest,gradient boosting with cox proportional hazards loss,deepsurv)を実験的に比較する。
これらのモデルのデフォルトのハイパーパラメータと、ランダム化探索で見つかる最高のハイパーパラメータの2つを比較した。
関連論文リスト
- Refereeing the Referees: Evaluating Two-Sample Tests for Validating Generators in Precision Sciences [0.0]
1次元テストは、他の多変量メトリクスに匹敵する感度のレベルを提供するが、計算コストは著しく低い。
この方法論は、モデル比較のための効率的で標準化されたツールを提供し、より高度なテストのベンチマークとして機能する。
論文 参考訳(メタデータ) (2024-09-24T13:58:46Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Machine Learning-Driven Optimization of TPMS Architected Materials Using Simulated Annealing [0.0]
本研究は,3周期最小表面(TPMS)構造の引張応力を機械学習とシミュレートアニーリング(SA)により最適化する新しい手法を提案する。
本研究は, TPMSモデルの有限要素解析から得られたデータセットを用いて, 応力予測におけるランダムフォレスト, 決定木およびXGBoostモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-05-28T05:06:37Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
トランスフォーマーに関するこれまでの研究は、異なるレイヤでパラメータを共有することに集中しており、モデルの深さを増大させることで、限られたパラメータを持つモデルの性能を向上させることができる。
このアプローチの成功は, モデル複雑性の増加により, ごく一部に過ぎず, 収束性の向上に大きく寄与することを示す。
8つの機械翻訳タスクの実験結果から,パラメータ共有モデルのモデル複雑性を半分に抑えて,我々のモデルが競合性能を達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T10:48:59Z) - Towards Convergence Rates for Parameter Estimation in Gaussian-gated
Mixture of Experts [40.24720443257405]
ガウスゲートMOEモデルにおける最大推定値(MLE)の収束解析を行う。
以上の結果から,MLEはガウスゲーティング関数の位置パラメータの2つの相補的な設定の下で異なる挙動を示すことが明らかとなった。
特に、これらの挙動は2つの異なる方程式系の可解性によって特徴づけられる。
論文 参考訳(メタデータ) (2023-05-12T16:02:19Z) - The Infinitesimal Jackknife and Combinations of Models [2.457924087844968]
Infinitesimal Jackknife を拡張して、任意の2つのモデル間の共分散を推定する。
これはモデルの組み合わせの不確実性を定量化したり、異なるモデルを比較するためのテスト統計を構築するのに使うことができる。
論文 参考訳(メタデータ) (2022-08-31T22:37:44Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。