論文の概要: Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network
- arxiv url: http://arxiv.org/abs/2003.09085v5
- Date: Tue, 28 Apr 2020 20:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 22:08:06.048852
- Title: Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network
- Title(参考訳): エッジ強化GANとオブジェクト検出ネットワークを用いたリモートセンシング画像の小型物体検出
- Authors: Jakaria Rabbi, Nilanjan Ray, Matthias Schubert, Subir Chowdhury and
Dennis Chao
- Abstract要約: 超高分解能GAN(ESRGAN)と呼ばれるGANベースモデルでは,画像強調性能が顕著である。
リモートセンシング画像の画質を向上させるために,新しいエッジ強化超解像GAN(EESRGAN)を提案する。
- 参考スコア(独自算出の注目度): 9.135036713000513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection performance of small objects in remote sensing images is not
satisfactory compared to large objects, especially in low-resolution and noisy
images. A generative adversarial network (GAN)-based model called enhanced
super-resolution GAN (ESRGAN) shows remarkable image enhancement performance,
but reconstructed images miss high-frequency edge information. Therefore,
object detection performance degrades for small objects on recovered noisy and
low-resolution remote sensing images. Inspired by the success of edge enhanced
GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN
(EESRGAN) to improve the image quality of remote sensing images and use
different detector networks in an end-to-end manner where detector loss is
backpropagated into the EESRGAN to improve the detection performance. We
propose an architecture with three components: ESRGAN, Edge Enhancement Network
(EEN), and Detection network. We use residual-in-residual dense blocks (RRDB)
for both the ESRGAN and EEN, and for the detector network, we use the faster
region-based convolutional network (FRCNN) (two-stage detector) and single-shot
multi-box detector (SSD) (one stage detector). Extensive experiments on a
public (car overhead with context) and a self-assembled (oil and gas storage
tank) satellite dataset show superior performance of our method compared to the
standalone state-of-the-art object detectors.
- Abstract(参考訳): リモートセンシング画像における小物体の検出性能は,大物体,特に低分解能・雑音画像に比べて満足できない。
拡張超解像GAN(ESRGAN)と呼ばれるGANベースモデルでは、画像強調性能が著しく向上するが、再構成された画像は高周波エッジ情報を見逃す。
これにより、回収されたノイズや低解像度のリモートセンシング画像において、小型物体の物体検出性能が低下する。
エッジ強化GAN(EEGAN)とESRGAN(ESRGAN)の成功にインスパイアされ、新たなエッジ強化超解像GAN(EESRGAN)を応用して、リモートセンシング画像の画質を改善し、検知損失をEESRGANに逆伝播させて検出性能を向上させるエンド・ツー・エンドな方法で異なる検出器ネットワークを使用する。
本稿では,ESRGAN,エッジ拡張ネットワーク(EEN),検出ネットワークの3つのコンポーネントからなるアーキテクチャを提案する。
我々はESRGANとEENの両方に残留残留密度ブロック(RRDB)を使用し、検出器ネットワークには高速領域ベース畳み込みネットワーク(FRCNN)と単発マルチボックス検出器(SSD)を用いる。
一般市民(車載車)と自己組み立て型(油・ガス貯蔵タンク)の衛星データセットに関する広範囲な実験は,スタンドアロンの最先端物体検出器と比較して優れた性能を示している。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
ヘイズ、雪、雨などの逆の気象条件は、画像品質の低下を招き、深層学習に基づく検知ネットワークの性能低下を招きかねない。
画像復元とオブジェクト検出のタスクをよりうまく統合するために,注目機能融合モジュールを備えた二重経路ネットワークを設計した。
我々はまた,検出ネットワークにヘイズフリーな機能を提供するサブネットワークを提案し,特に,明瞭な特徴抽出サブネットワークと検出ネットワーク間の距離を最小化することにより,検出ネットワークの性能を向上させる。
論文 参考訳(メタデータ) (2024-03-14T09:57:15Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
リモートセンシングオブジェクト検出のための周波数対応特徴ピラミッドフレームワーク(FFPF)を提案する。
F-ResNetは、周波数領域の畳み込みをバックボーンの各ステージに差し込み、スペクトルコンテキスト情報を知覚するために提案される。
BSFPNは、双方向サンプリング戦略とスキップ接続を用いて、異なるスケールの物体の特徴の関連をより良くモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-09-01T15:50:58Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Radar Guided Dynamic Visual Attention for Resource-Efficient RGB Object
Detection [10.983063391496543]
自動運転車の認識品質を向上させるために,RGB画像に対する新しいレーダー誘導空間アテンションを提案する。
提案手法は,RGBモードの物体検出装置では検出されない小型・長距離物体の知覚を改善する。
論文 参考訳(メタデータ) (2022-06-03T18:29:55Z) - Enhanced Single-shot Detector for Small Object Detection in Remote
Sensing Images [33.84369068593722]
小型物体検出のための画像ピラミッド単発検出器(IPSSD)を提案する。
IPSSDでは、単一ショット検出器と画像ピラミッドネットワークを組み合わせて、候補領域を生成するための意味的に強い特徴を抽出する。
提案するネットワークは,特徴ピラミッドネットワークから小規模な特徴を拡張できる。
論文 参考訳(メタデータ) (2022-05-12T07:35:07Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Remote Sensing Image Super-resolution and Object Detection: Benchmark
and State of the Art [7.74389937337756]
本稿では、リモートセンシング画像の現在のデータセットとオブジェクト検出方法(深層学習に基づく)についてレビューする。
本稿では,大規模かつ一般公開なリモートセンシング超解像オブジェクト検出データセットを提案する。
また、画像超解像に基づく物体検出のベンチマークを行うために、Residual Feature aggregate (MCGR) と補助YOLOv5検出器を備えた新しいマルチクラスサイクル超解像対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-05T04:56:34Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
画像全体のグローバルビューを効果的に学ぶために、極端なダウンサンプリング技術を使用するExtremely-Downsampled Network(EDN)を紹介します。
実験は、ednがリアルタイム速度でsart性能を達成することを実証する。
論文 参考訳(メタデータ) (2020-12-24T04:23:48Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。