Exploring Categorical Regularization for Domain Adaptive Object
Detection
- URL: http://arxiv.org/abs/2003.09152v1
- Date: Fri, 20 Mar 2020 08:53:10 GMT
- Title: Exploring Categorical Regularization for Domain Adaptive Object
Detection
- Authors: Chang-Dong Xu and Xing-Ran Zhao and Xin Jin and Xiu-Shen Wei
- Abstract summary: We propose a categorical regularization framework for domain adaptive object detection.
It can be applied as a plug-and-play component on a series of Adaptive Domain Faster R-CNN methods.
Our method obtains a significant performance gain over original Domain Adaptive Faster R-CNN detectors.
- Score: 27.348272177261233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we tackle the domain adaptive object detection problem, where
the main challenge lies in significant domain gaps between source and target
domains. Previous work seeks to plainly align image-level and instance-level
shifts to eventually minimize the domain discrepancy. However, they still
overlook to match crucial image regions and important instances across domains,
which will strongly affect domain shift mitigation. In this work, we propose a
simple but effective categorical regularization framework for alleviating this
issue. It can be applied as a plug-and-play component on a series of Domain
Adaptive Faster R-CNN methods which are prominent for dealing with domain
adaptive detection. Specifically, by integrating an image-level multi-label
classifier upon the detection backbone, we can obtain the sparse but crucial
image regions corresponding to categorical information, thanks to the weakly
localization ability of the classification manner. Meanwhile, at the instance
level, we leverage the categorical consistency between image-level predictions
(by the classifier) and instance-level predictions (by the detection head) as a
regularization factor to automatically hunt for the hard aligned instances of
target domains. Extensive experiments of various domain shift scenarios show
that our method obtains a significant performance gain over original Domain
Adaptive Faster R-CNN detectors. Furthermore, qualitative visualization and
analyses can demonstrate the ability of our method for attending on the key
regions/instances targeting on domain adaptation. Our code is open-source and
available at \url{https://github.com/Megvii-Nanjing/CR-DA-DET}.
Related papers
- Few-Shot Domain Adaptive Object Detection for Microscopic Images [7.993453987882035]
Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data.
Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains.
Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment, and an instance-level classification loss.
arXiv Detail & Related papers (2024-07-10T13:11:58Z) - Domain Adaptation for Object Detection using SE Adaptors and Center Loss [0.0]
We introduce an unsupervised domain adaptation method built on the foundation of faster-RCNN to prevent drops in performance due to domain shift.
We also introduce a family of adaptation layers that leverage the squeeze excitation mechanism called SE Adaptors to improve domain attention.
Finally, we incorporate a center loss in the instance and image level representations to improve the intra-class variance.
arXiv Detail & Related papers (2022-05-25T17:18:31Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training.
Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment.
We propose Forward-Backward Cyclic Adaptation, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing.
arXiv Detail & Related papers (2020-02-03T06:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.