論文の概要: Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection
- arxiv url: http://arxiv.org/abs/2003.10424v1
- Date: Mon, 23 Mar 2020 17:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 00:08:30.129510
- Title: Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection
- Title(参考訳): 画像処理センサ選択のための確率戦略の学習
- Authors: He Sun, Adrian V. Dalca and Katherine L. Bouman
- Abstract要約: 本稿では,センサ設計のための確率的センササンプリング戦略を学習する物理制約付き,完全微分可能なオートエンコーダを提案する。
提案手法は,センサ選択の相関関係を2次完全接続型Isingモデルとして特徴付ける,システムに好まれるサンプリング分布を学習する。
- 参考スコア(独自算出の注目度): 16.553234762932938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimized sensing is important for computational imaging in low-resource
environments, when images must be recovered from severely limited measurements.
In this paper, we propose a physics-constrained, fully differentiable,
autoencoder that learns a probabilistic sensor-sampling strategy for optimized
sensor design. The proposed method learns a system's preferred sampling
distribution that characterizes the correlations between different sensor
selections as a binary, fully-connected Ising model. The learned probabilistic
model is achieved by using a Gibbs sampling inspired network architecture, and
is trained end-to-end with a reconstruction network for efficient co-design.
The proposed framework is applicable to sensor selection problems in a variety
of computational imaging applications. In this paper, we demonstrate the
approach in the context of a very-long-baseline-interferometry (VLBI) array
design task, where sensor correlations and atmospheric noise present unique
challenges. We demonstrate results broadly consistent with expectation, and
draw attention to particular structures preferred in the telescope array
geometry that can be leveraged to plan future observations and design array
expansions.
- Abstract(参考訳): 低リソース環境において、非常に限られた測定値から画像を取り戻さなければならない場合、最適化されたセンシングは計算イメージングにおいて重要である。
本稿では,最適センサ設計のための確率的センササンプリング戦略を学習する物理制約付き完全微分可能オートエンコーダを提案する。
提案手法は,センサ選択の相関関係を連成完全連結Isingモデルとして特徴付ける,システムの好むサンプリング分布を学習する。
学習された確率モデルはgibbsサンプリングをインスパイアしたネットワークアーキテクチャを用いて実現され、効率的な共同設計のためにレコンストラクションネットワークと共にエンドツーエンドで訓練される。
提案手法は,様々な計算イメージング応用においてセンサ選択問題に適用できる。
本稿では,超長ベースライン干渉法(vlbi)アレー設計タスクにおいて,センサ相関と大気雑音が独特の課題を呈する手法を示す。
今後の観測・設計計画に活用可能な望遠鏡アレイ幾何に好まれる特定の構造に注意を向け,期待値と概ね一致した結果を示す。
関連論文リスト
- Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design [0.0]
ベイズ最適実験設計(OED)は、不確実性を最適に低減できるデータ、センサーの構成、実験を特定することを目指している。
情報理論は、最適化問題として実験やセンサ配置の選択を定式化し、OEDを導出する。
本研究では,ベイジアンOEDをセンサネットワークの地震イベント検出能力の最適化に用いるために必要なフレームワークを開発する。
論文 参考訳(メタデータ) (2024-09-27T04:45:27Z) - Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective [0.0]
粒子追跡のためのE2E差分型決定型学習手法を提案する。
離散的な代入操作の微分可能なバリエーションは、効率的なネットワーク最適化を可能にすることを示す。
E2Eの微分性は、勾配情報の一般利用に加えて、予測不安定性を緩和するロバスト粒子追跡のための重要なツールである、と我々は主張する。
論文 参考訳(メタデータ) (2024-07-18T11:42:58Z) - Optimizing Sensor Network Design for Multiple Coverage [0.9668407688201359]
本稿では,より効率的で堅牢なセンサネットワークを設計するgreedy (next-best-view)アルゴリズムの目的関数を提案する。
また、ほぼリアルタイムで計算を行うアルゴリズムを高速化するためのディープラーニングモデルも導入する。
論文 参考訳(メタデータ) (2024-05-15T05:13:20Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
本稿では,アグリゲーションエラーを最小限に抑え,選択したデバイス数を最大化する目的で,共同装置の選択とアグリゲーションビームフォーミング設計について検討する。
コスト効率のよい方法でこの問題に取り組むために,ランダムな集合ビームフォーミング方式を提案する。
また, 得られた集計誤差と, デバイス数が大きい場合に選択したデバイス数についても解析を行った。
論文 参考訳(メタデータ) (2024-02-20T23:59:45Z) - Model-aware reinforcement learning for high-performance Bayesian
experimental design in quantum metrology [0.5461938536945721]
量子センサは、様々なパラメータにわたる実験者による操作を可能にすることで、推定中に制御の柔軟性を提供する。
量子力学、推定、仮説テストにおいて、幅広い問題を最適化できる汎用的な手順を導入する。
粒子フィルタリングに基づくモデル認識強化学習(RL)とベイズ推定を組み合わせた。
論文 参考訳(メタデータ) (2023-12-28T12:04:15Z) - A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
ディープニューラルネットワーク(DNN)のための動的センサ選択手法を提案する。
データセット全体の固定選択ではなく、個々の入力サンプルに対して最適なセンササブセット選択を導出することができる。
無線センサネットワーク(WSN)の寿命を、各ノードの送信頻度に制約を加えることで、この動的選択をいかに利用できるかを示す。
論文 参考訳(メタデータ) (2023-08-16T14:04:50Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErtは物理システムのデータ駆動分析と合成のためのフレームワークである。
これは、前方および逆写像を表す決定論的デコーダ、系の出力の確率分布を捉える正規化フロー、入力と出力の間の単射性の欠如についてコンパクトな潜在表現を学ぶ変分エンコーダを使用する。
論文 参考訳(メタデータ) (2023-07-24T07:58:18Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。