論文の概要: Optimizing Sensor Network Design for Multiple Coverage
- arxiv url: http://arxiv.org/abs/2405.09096v2
- Date: Mon, 20 May 2024 18:32:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:43:12.951907
- Title: Optimizing Sensor Network Design for Multiple Coverage
- Title(参考訳): マルチカバーのためのセンサネットワーク設計の最適化
- Authors: Lukas Taus, Yen-Hsi Richard Tsai,
- Abstract要約: 本稿では,より効率的で堅牢なセンサネットワークを設計するgreedy (next-best-view)アルゴリズムの目的関数を提案する。
また、ほぼリアルタイムで計算を行うアルゴリズムを高速化するためのディープラーニングモデルも導入する。
- 参考スコア(独自算出の注目度): 0.9668407688201359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensor placement optimization methods have been studied extensively. They can be applied to a wide range of applications, including surveillance of known environments, optimal locations for 5G towers, and placement of missile defense systems. However, few works explore the robustness and efficiency of the resulting sensor network concerning sensor failure or adversarial attacks. This paper addresses this issue by optimizing for the least number of sensors to achieve multiple coverage of non-simply connected domains by a prescribed number of sensors. We introduce a new objective function for the greedy (next-best-view) algorithm to design efficient and robust sensor networks and derive theoretical bounds on the network's optimality. We further introduce a Deep Learning model to accelerate the algorithm for near real-time computations. The Deep Learning model requires the generation of training examples. Correspondingly, we show that understanding the geometric properties of the training data set provides important insights into the performance and training process of deep learning techniques. Finally, we demonstrate that a simple parallel version of the greedy approach using a simpler objective can be highly competitive.
- Abstract(参考訳): センサ配置最適化法は広く研究されている。
それらは、既知の環境の監視、5Gタワーの最適な位置、ミサイル防衛システムの配置など、幅広い用途に適用できる。
しかし、センサーの故障や敵の攻撃に関するセンサネットワークの堅牢性と効率性を調べる研究はほとんどない。
本稿では、最小限のセンサを最適化して、所定の数のセンサによって、非単純連結領域の複数のカバレッジを実現することで、この問題に対処する。
本稿では,より効率的で堅牢なセンサネットワークを設計し,ネットワークの最適性に関する理論的境界を導出するための,新しい目的関数(greedy,next-best-view)アルゴリズムを提案する。
さらに,ほぼリアルタイムに計算を行うアルゴリズムを高速化するディープラーニングモデルを導入する。
ディープラーニングモデルは、トレーニング例の生成を必要とする。
それに対応して、トレーニングデータセットの幾何学的特性を理解することは、深層学習技術の性能と訓練過程に重要な洞察を与えることを示す。
最後に,より単純な目的を用いたグレディアプローチの単純な並列バージョンは,非常に競争力が高いことを実証する。
関連論文リスト
- HGFF: A Deep Reinforcement Learning Framework for Lifetime Maximization in Wireless Sensor Networks [5.4894758104028245]
深部強化学習とヘテロジニアスグラフニューラルネットワークを組み合わせた新しいフレームワークを提案し,シンクの移動経路を自動構築する。
実世界の異なる無線センサネットワークをシミュレートする静的マップと動的マップを10種類設計する。
我々のアプローチは、あらゆる種類の地図において、既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-11T13:09:11Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Active search and coverage using point-cloud reinforcement learning [50.741409008225766]
本稿では,目的探索とカバレッジのためのエンドツーエンドの深層強化学習ソリューションを提案する。
RLの深い階層的特徴学習は有効であり、FPS(Fastthest Point sample)を用いることで点数を削減できることを示す。
また、ポイントクラウドに対するマルチヘッドの注意がエージェントの学習を高速化する上で有効であるが、同じ結果に収束することを示す。
論文 参考訳(メタデータ) (2023-12-18T18:16:30Z) - Efficient and robust Sensor Placement in Complex Environments [1.1421942894219899]
本稿では,複雑な環境下での効率的な監視やコミュニケーションの課題に対処する。
目的を達成するための欲求的アルゴリズムを提案する。
深層学習技術は目的関数の評価を加速するために用いられる。
論文 参考訳(メタデータ) (2023-09-15T17:10:19Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Finding the Optimal Network Depth in Classification Tasks [10.248235276871258]
複数の分類器ヘッドを用いた軽量ニューラルネットワークの高速エンドツーエンド学習法を開発した。
モデルが各ヘッドの重要性を決定することによって、ネットワークの不要なコンポーネントを検出し、取り除くことができる。
論文 参考訳(メタデータ) (2020-04-17T11:08:45Z) - Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection [16.553234762932938]
本稿では,センサ設計のための確率的センササンプリング戦略を学習する物理制約付き,完全微分可能なオートエンコーダを提案する。
提案手法は,センサ選択の相関関係を2次完全接続型Isingモデルとして特徴付ける,システムに好まれるサンプリング分布を学習する。
論文 参考訳(メタデータ) (2020-03-23T17:52:17Z) - Regression with Deep Learning for Sensor Performance Optimization [0.0]
我々はKerasとNumPyによって実現されたディープラーニングによる非線形回帰を再適用した。
特に、深層学習を用いて産業センサの入力と出力の非線形関係をパラメータ化する。
論文 参考訳(メタデータ) (2020-02-22T19:58:58Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。