FAS-UNet: A Novel FAS-driven Unet to Learn Variational Image
Segmentation
- URL: http://arxiv.org/abs/2210.15164v1
- Date: Thu, 27 Oct 2022 04:15:16 GMT
- Title: FAS-UNet: A Novel FAS-driven Unet to Learn Variational Image
Segmentation
- Authors: Hui Zhu, Shi Shu and Jianping Zhang
- Abstract summary: We propose a novel variational-model-informed network (FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features.
The proposed network integrates image data and mathematical models, and implements them through learning a few convolution kernels.
Experimental results show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations.
- Score: 3.741136641573471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving variational image segmentation problems with hidden physics is often
expensive and requires different algorithms and manually tunes model parameter.
The deep learning methods based on the U-Net structure have obtained
outstanding performances in many different medical image segmentation tasks,
but designing such networks requires a lot of parameters and training data, not
always available for practical problems. In this paper, inspired by traditional
multi-phase convexity Mumford-Shah variational model and full approximation
scheme (FAS) solving the nonlinear systems, we propose a novel
variational-model-informed network (denoted as FAS-Unet) that exploits the
model and algorithm priors to extract the multi-scale features. The proposed
model-informed network integrates image data and mathematical models, and
implements them through learning a few convolution kernels. Based on the
variational theory and FAS algorithm, we first design a feature extraction
sub-network (FAS-Solution module) to solve the model-driven nonlinear systems,
where a skip-connection is employed to fuse the multi-scale features. Secondly,
we further design a convolution block to fuse the extracted features from the
previous stage, resulting in the final segmentation possibility. Experimental
results on three different medical image segmentation tasks show that the
proposed FAS-Unet is very competitive with other state-of-the-art methods in
qualitative, quantitative and model complexity evaluations. Moreover, it may
also be possible to train specialized network architectures that automatically
satisfy some of the mathematical and physical laws in other image problems for
better accuracy, faster training and improved generalization.
Related papers
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
We introduce a simple, unified framework to handle diverse conditional generation tasks.
Our approach enables versatile capabilities via different inference-time sampling schemes.
Our model supports additional capabilities like non-spatially aligned and coarse conditioning.
arXiv Detail & Related papers (2024-10-15T09:41:43Z) - Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
Existing methods are not adapted to tasks with complex multi-physical and multi-domain phenomena.
We propose a Neural Bond graph (NBgE) producing multi-physics-informed representations that can be fed into any task-specific model.
arXiv Detail & Related papers (2024-05-22T12:30:25Z) - Transfer Learning with Reconstruction Loss [12.906500431427716]
This paper proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss.
The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning.
For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization.
arXiv Detail & Related papers (2024-03-31T00:22:36Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Efficient and Accurate Multi-scale Topological Network for Single Image
Dehazing [31.543771270803056]
In this paper, we pay attention to the feature extraction and utilization of the input image itself.
We propose a Multi-scale Topological Network (MSTN) to fully explore the features at different scales.
Meanwhile, we design a Multi-scale Feature Fusion Module (MFFM) and an Adaptive Feature Selection Module (AFSM) to achieve the selection and fusion of features at different scales.
arXiv Detail & Related papers (2021-02-24T08:53:14Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.