A Variational Quantum Attack for AES-like Symmetric Cryptography
- URL: http://arxiv.org/abs/2205.03529v1
- Date: Sat, 7 May 2022 03:15:15 GMT
- Title: A Variational Quantum Attack for AES-like Symmetric Cryptography
- Authors: ZeGuo Wang, ShiJie Wei, Gui-Lu Long, Lajos Hanzo
- Abstract summary: We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
- Score: 69.80357450216633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a variational quantum attack algorithm (VQAA) for classical
AES-like symmetric cryptography, as exemplified the simplified-data encryption
standard (S-DES). In the VQAA, the known ciphertext is encoded as the ground
state of a Hamiltonian that is constructed through a regular graph, and the
ground state can be found using a variational approach. We designed the ansatz
and cost function for the S-DES's variational quantum attack. It is surprising
that sometimes the VQAA is even faster than Grove's algorithm as demonstrated
by our simulation results. The relationships of the entanglement entropy,
concurrence and the cost function are investigated, which indicate that
entanglement plays a crucial role in the speedup.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Hacking Cryptographic Protocols with Advanced Variational Quantum
Attacks [0.0]
We implement simulations of our attacks for symmetric-key protocols such as S-DES, S-AES and Blowfish.
We show how our attack allows a classical simulation of a small 8-qubit quantum computer to find the secret key of one 32-bit Blowfish instance with 24 times fewer number of iterations than a brute-force attack.
Further applications beyond symmetric-key cryptography are also discussed, including asymmetric-key protocols and hash functions.
arXiv Detail & Related papers (2023-11-06T09:46:16Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Proposal for Quantum Ciphertext-Policy Attribute-Based Encryption [0.0]
A Quantum Ciphertext-Policy Attribute-Based Encryption scheme (QCP-ABE) has been presented.
A Semi Quantum version of the scheme has also been considered.
arXiv Detail & Related papers (2022-03-21T11:22:09Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Fully Homomorphic Encryption by Integrating Pauli One-time Pad
with Quaternions [4.182969308816531]
Quantum fully homomorphic encryption (QFHE) allows to evaluate quantum circuits on encrypted data.
We present a novel QFHE scheme, which extends Pauli one-time pad encryption by relying on the quaternion of SU(2).
arXiv Detail & Related papers (2020-12-08T04:54:02Z) - Quantum Ciphertext Dimension Reduction Scheme for Homomorphic Encrypted
Data [4.825895794318393]
Proposed quantum principal component extraction algorithm (QPCE)
A quantum homomorphic ciphertext dimension reduction scheme (QHEDR)
A quantum ciphertext dimensionality reduction scheme implemented in the quantum cloud.
arXiv Detail & Related papers (2020-11-19T07:16:22Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
Implementation of variational Quantum Machine Learning (QML) algorithms on Noisy Intermediate-Scale Quantum (NISQ) devices has issues related to the high number of qubits needed and the noise associated with multi-qubit gates.
We propose a variational QML algorithm using a dressed quantum network to address these issues.
Unlike in most other existing QML algorithms, our quantum circuit consists only of single-qubit gates, making it robust against noise.
arXiv Detail & Related papers (2020-07-20T16:29:32Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.