論文の概要: Quantum circuit-like learning: A fast and scalable classical
machine-learning algorithm with similar performance to quantum circuit
learning
- arxiv url: http://arxiv.org/abs/2003.10667v2
- Date: Sun, 12 Dec 2021 02:38:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 09:34:16.810698
- Title: Quantum circuit-like learning: A fast and scalable classical
machine-learning algorithm with similar performance to quantum circuit
learning
- Title(参考訳): 量子回路様学習:量子回路学習に類似した高速でスケーラブルな古典的機械学習アルゴリズム
- Authors: Naoko Koide-Majima, Kei Majima
- Abstract要約: 量子回路学習(QCL)と同じヒルベルト空間を用いた古典的機械学習アルゴリズムを提案する。
数値シミュレーションにおいて,提案アルゴリズムは複数のMLタスクに対するQCLに類似した性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The application of near-term quantum devices to machine learning (ML) has
attracted much attention. In one such attempt, Mitarai et al. (2018) proposed a
framework to use a quantum circuit for supervised ML tasks, which is called
quantum circuit learning (QCL). Due to the use of a quantum circuit, QCL can
employ an exponentially high-dimensional Hilbert space as its feature space.
However, its efficiency compared to classical algorithms remains unexplored. In
this study, using a statistical technique called count sketch, we propose a
classical ML algorithm that uses the same Hilbert space. In numerical
simulations, our proposed algorithm demonstrates similar performance to QCL for
several ML tasks. This provides a new perspective with which to consider the
computational and memory efficiency of quantum ML algorithms.
- Abstract(参考訳): 機械学習(ML)への短期量子デバイスの適用は注目されている。
そのような試みの1つとして、mitarai et al. (2018)は、量子回路を教師付きmlタスクに使用するフレームワークを提案し、これをquantum circuit learning (qcl) と呼ぶ。
量子回路を用いることで、QCLはその特徴空間として指数的に高次元ヒルベルト空間を用いることができる。
しかし、古典的なアルゴリズムと比較して効率は未定である。
本研究では,count sketchと呼ばれる統計手法を用いて,同じヒルベルト空間を用いた古典mlアルゴリズムを提案する。
数値シミュレーションにおいて,提案アルゴリズムは複数のMLタスクに対するQCLに類似した性能を示す。
これにより、量子MLアルゴリズムの計算とメモリ効率を考慮する新たな視点が得られる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
本稿では,文字列ダイアグラムの観点からハイブリッドアルゴリズムを記述するための公式なフレームワークを開発する。
弦図の特筆すべき特徴は、量子古典的インタフェースに対応する関手ボックスの使用である。
論文 参考訳(メタデータ) (2024-07-04T06:37:16Z) - Continuous-variable quantum kernel method on a programmable photonic quantum processor [0.0]
CV量子カーネル法は,実験上の不完全条件下であっても,複数のデータセットを頑健に分類できることを実験的に証明した。
このデモンストレーションは、QMLのためのCV量子システムの実用性に光を当て、他のCVQMLアルゴリズムにおけるさらなる研究を刺激する。
論文 参考訳(メタデータ) (2024-05-02T08:33:31Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
変分量子アルゴリズム(VQA)は,LDA法とバランスの取れた精度で性能が向上したことを示す。
現在の量子コンピュータはノイズが多く、テストする量子ビットは少ないため、QML法の現在の量子的利点と潜在的な量子的優位性を実証することは困難である。
論文 参考訳(メタデータ) (2022-08-28T16:58:37Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - Quantum Machine Learning For Classical Data [0.0]
量子コンピューティングと教師付き機械学習アルゴリズムの交差について研究する。
特に,教師付き機械学習アルゴリズムの高速化に量子コンピュータがどの程度使えるかを検討する。
論文 参考訳(メタデータ) (2021-05-08T12:11:44Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
機械学習と量子コンピューティングは、特定のアルゴリズムのパフォーマンスと振る舞いにパラダイムシフトを引き起こしている。
本稿ではまず,量子的特徴空間の実装に関する数学的直観について述べる。
従来のKNNの分類手法を模倣した雑音変動量子回路KNNを構築した。
論文 参考訳(メタデータ) (2020-02-22T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。