論文の概要: Quantum variational learning for entanglement witnessing
- arxiv url: http://arxiv.org/abs/2205.10429v1
- Date: Fri, 20 May 2022 20:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-12 07:46:36.976300
- Title: Quantum variational learning for entanglement witnessing
- Title(参考訳): 絡み合い観察のための量子変分学習
- Authors: Francesco Scala, Stefano Mangini, Chiara Macchiavello, Daniele Bajoni,
Dario Gerace
- Abstract要約: この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several proposals have been recently introduced to implement Quantum Machine
Learning (QML) algorithms for the analysis of classical data sets employing
variational learning means. There has been, however, a limited amount of work
on the characterization and analysis of quantum data by means of these
techniques, so far. This work focuses on one such ambitious goal, namely the
potential implementation of quantum algorithms allowing to properly classify
quantum states defined over a single register of $n$ qubits, based on their
degree of entanglement. This is a notoriously hard task to be performed on
classical hardware, due to the exponential scaling of the corresponding Hilbert
space as $2^n$. We exploit the notion of "entanglement witness", i.e., an
operator whose expectation values allow to identify certain specific states as
entangled. More in detail, we made use of Quantum Neural Networks (QNNs) in
order to successfully learn how to reproduce the action of an entanglement
witness. This work may pave the way to an efficient combination of QML
algorithms and quantum information protocols, possibly outperforming classical
approaches to analyse quantum data. All these topics are discussed and properly
demonstrated through a simulation of the related quantum circuit model.
- Abstract(参考訳): 近年,変分学習手段を用いた古典的データセット解析のための量子機械学習(QML)アルゴリズムの実装が提案されている。
しかし、これまでのところ量子データのキャラクタリゼーションと解析に関する研究は限られている。
この研究は、量子アルゴリズムの潜在的な実装により、量子状態の1つのレジスタ上に定義された$n$ qubitsを、その絡み合いの度合いに基づいて適切に分類できるという野心的な目標に焦点をあてる。
これは、対応するヒルベルト空間の指数的スケーリングが 2^n$ となるため、古典的ハードウェア上で行うのは非常に難しいことで知られている。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
より詳しくは,量子ニューラルネットワーク(QNN)を用いて,絡み合った目撃者の行動を再現する方法を学習した。
この研究は、QMLアルゴリズムと量子情報プロトコルの効率的な組み合わせへの道を開くかもしれない。
これらのトピックは、関連する量子回路モデルのシミュレーションを通じて議論され、適切に実証される。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - State preparation and evolution in quantum computing: a perspective from
Hamiltonian moments [5.774827369850958]
近年の取り組みでは、量子計算されたハミルトンモーメントに基づく量子アルゴリズムの開発が注目されている。
本チュートリアルでは、量子ハードウェアを用いたハミルトンモーメントの典型的な計算方法と、推定状態エネルギーの精度の向上に焦点を当てる。
論文 参考訳(メタデータ) (2021-09-27T04:24:19Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
本稿では,量子状態の説明と識別を行う数値的に安価な手法を提案する。
エンタングルメントの構造が異なる量子状態を特徴付けるのに十分であることを示す。
本手法は、多体量子磁気システムにおいて、異なる性質の相転移を検出するために用いられる。
論文 参考訳(メタデータ) (2021-07-21T06:22:35Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
我々は、QRAC(Quantum Random Access Coding)を用いて、より少ない量子ビットで離散的な特徴をマップする方法を示す。
QRACと最近提案された量子量学習(quantum metric learning)と呼ばれる量子特徴マップのトレーニング戦略を組み合わせることで、個別の特徴をトレーニング可能な量子回路に埋め込む新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T12:02:01Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
量子シミュレーションから量子データを解析するための教師なし量子機械学習アルゴリズムである変分量子異常検出を提案する。
このアルゴリズムは、事前の物理的知識を持たないシステムの位相図を抽出するために用いられる。
現在ではアクセスしやすいデバイスで使用でき、実際の量子コンピュータ上でアルゴリズムを実行することができる。
論文 参考訳(メタデータ) (2021-06-15T06:54:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。