Simulating finite-time quantum isothermal processes with generic
superconducting quantum circuit
- URL: http://arxiv.org/abs/2003.11269v1
- Date: Wed, 25 Mar 2020 08:31:45 GMT
- Title: Simulating finite-time quantum isothermal processes with generic
superconducting quantum circuit
- Authors: Jin-Fu Chen, Ying Li, Hui Dong
- Abstract summary: We provide a discrete-step method to separate the work done and the heat exchange in the isothermal process.
The piecewise control scheme makes it possible to simulate the whole process on a generic quantum computer.
We implement the simulation on ibmqx2 to show the $mathrmmathcalC/tau$ scaling of the extra work in the finite-time isothermal process.
- Score: 7.925489596652414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The finite-time isothermal process is fundamental in quantum thermodynamics
yet complicated with combination of changing control parameters and the
interaction with the thermal bath. Such complexity prevents the direct
application of the traditional thermodynamics measurement of the relevant
quantities. In this paper, we provide a discrete-step method to separate the
work done and the heat exchange in the isothermal process by decomposing the
process into piecewise adiabatic and isochoric processes. The piecewise control
scheme makes it possible to simulate the whole process on a generic quantum
computer, which provides a new platform to experimentally study quantum
thermodynamics. We implement the simulation on ibmqx2 to show the
$\mathrm{\mathcal{C}/\tau}$ scaling of the extra work in the finite-time
isothermal process.
Related papers
- Finite-Time Processes In Quantum Thermodynamics: The Limits Of Irreversibility [0.0]
The emergence of irreversibility in physical processes, despite the reversible nature of quantum mechanics, remains an open question in physics.
This thesis explores the intricate relationship between quantum mechanics and thermodynamics.
We tackle the challenge of deriving irreversible thermodynamic behavior from the reversible microscopic framework of quantum mechanics.
arXiv Detail & Related papers (2024-10-24T16:48:24Z) - Asymmetries of thermal processes in open quantum systems [0.0]
An intriguing phenomenon in non-equilibrium quantum thermodynamics is the asymmetry of thermal processes.
We show that the free relaxation to thermal equilibrium follows intrinsically different paths depending on whether the temperature of the system increases (heating up) or decreases (cooling down)
Our theory is exemplified using the recently developed thermal kinematics based on information geometry theory.
arXiv Detail & Related papers (2024-06-28T11:07:21Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach [0.0]
Understanding the thermodynamics of driven quantum systems strongly coupled to thermal baths is a central focus of quantum thermodynamics and mesoscopic physics.
The mesoscopic leads approach was recently generalised to steady state thermal machines and has the ability to replicate Landauer B"uttiker theory in the non-interacting limit.
arXiv Detail & Related papers (2022-06-02T15:15:59Z) - Model-free optimization of power/efficiency tradeoffs in quantum thermal
machines using reinforcement learning [0.0]
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale.
We introduce a general model-free framework based on Reinforcement Learning to identify out-of-equilibrium thermodynamic cycles.
arXiv Detail & Related papers (2022-04-10T22:44:28Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.