Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach
- URL: http://arxiv.org/abs/2206.01090v3
- Date: Tue, 27 Aug 2024 21:47:39 GMT
- Title: Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach
- Authors: Artur M. Lacerda, Archak Purkayastha, Michael Kewming, Gabriel T. Landi, John Goold,
- Abstract summary: Understanding the thermodynamics of driven quantum systems strongly coupled to thermal baths is a central focus of quantum thermodynamics and mesoscopic physics.
The mesoscopic leads approach was recently generalised to steady state thermal machines and has the ability to replicate Landauer B"uttiker theory in the non-interacting limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the thermodynamics of driven quantum systems strongly coupled to thermal baths is a central focus of quantum thermodynamics and mesoscopic physics. A variety of different methodological approaches exist in the literature, all with their own advantages and disadvantages. The mesoscopic leads approach was recently generalised to steady state thermal machines and has the ability to replicate Landauer B\"uttiker theory in the non-interacting limit. In this approach a set of discretised lead modes, each locally damped, provide a markovian embedding for the baths. In this work we further generalise this approach to incorporate an arbitrary time dependence in the system Hamiltonian. Following a careful discussion of the calculation of thermodynamic quantities we illustrate the power of our approach by studying several driven mesoscopic examples coupled to finite temperature fermionic baths, replicating known results in various limits. In the case of a driven non interacting quantum dot we show how fast driving can be used to induce heat rectification.
Related papers
- Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Quantum stochastic thermodynamics in the mesoscopic-leads formulation [0.0]
We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems.
Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes.
arXiv Detail & Related papers (2024-04-09T16:17:48Z) - Entropy production in the mesoscopic-leads formulation of quantum thermodynamics [0.0]
entropy production of systems strongly coupled to thermal baths is a core problem of quantum thermodynamics and mesoscopic physics.
Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths.
We show numerically, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding.
arXiv Detail & Related papers (2023-12-19T19:00:04Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Classical simulation and theory of quantum annealing in a thermal
environment [0.0]
We study quantum annealing in the quantum Ising model coupled to a thermal environment.
This quasistatic and isothermal evolution, however, fails near the end of annealing because the relaxation time grows infinitely.
We propose experiments on the D-Wave quantum annealer.
arXiv Detail & Related papers (2021-02-04T12:19:52Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.