論文の概要: Rigorous State Evolution Analysis for Approximate Message Passing with
Side Information
- arxiv url: http://arxiv.org/abs/2003.11964v1
- Date: Wed, 25 Mar 2020 16:11:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 03:42:17.671204
- Title: Rigorous State Evolution Analysis for Approximate Message Passing with
Side Information
- Title(参考訳): サイド情報を用いた近似メッセージパッシングの厳密な状態進化解析
- Authors: Hangjin Liu and Cynthia Rush and Dror Baron
- Abstract要約: サイド情報をAMP-SI(Adroximate Message Passing with Side Information)に組み込んだ新しいフレームワークが導入された。
信号とSIペアの間に統計的依存関係がある場合、AMP-SIに対して厳密な性能保証を提供する。
AMP-SI平均二乗誤差を精度良く予測できることを示す。
- 参考スコア(独自算出の注目度): 15.90775344965397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common goal in many research areas is to reconstruct an unknown signal x
from noisy linear measurements. Approximate message passing (AMP) is a class of
low-complexity algorithms that can be used for efficiently solving such
high-dimensional regression tasks. Often, it is the case that side information
(SI) is available during reconstruction. For this reason, a novel algorithmic
framework that incorporates SI into AMP, referred to as approximate message
passing with side information (AMP-SI), has been recently introduced. In this
work, we provide rigorous performance guarantees for AMP-SI when there are
statistical dependencies between the signal and SI pairs and the entries of the
measurement matrix are independent and identically distributed Gaussian. The
AMP-SI performance is shown to be provably tracked by a scalar iteration
referred to as state evolution. Moreover, we provide numerical examples that
demonstrate empirically that the SE can predict the AMP-SI mean square error
accurately.
- Abstract(参考訳): 多くの研究領域で共通の目標は、ノイズの線形測定から未知の信号xを再構成することである。
近似メッセージパッシング(AMP)は、そのような高次元回帰タスクを効率的に解くために使用できる低複雑さアルゴリズムのクラスである。
多くの場合、リコンストラクション中にサイド情報(si)が利用可能である。
このため、サイド情報付き近似メッセージパッシング(amp-si)と呼ばれるampにsiを組み込む新しいアルゴリズムフレームワークが最近導入された。
本研究では,信号とSIペア間の統計的依存関係と測定行列のエントリが独立かつ同一分布である場合,AMP-SIに対して厳密な性能保証を提供する。
AMP-SI性能は状態進化と呼ばれるスカラー反復によって確実に追跡される。
さらに、SEがAMP-SI平均二乗誤差を正確に予測できることを実証的に示す数値例を示す。
関連論文リスト
- Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Sufficient Statistic Memory Approximate Message Passing [5.708490209087275]
AMP型アルゴリズムの重要な特徴は、それらの力学が状態進化によって正しく記述できることである。
本稿では,十分な統計条件下でのメモリAMP(MAMP)を提案する。
論文 参考訳(メタデータ) (2022-06-23T13:06:00Z) - Sufficient-Statistic Memory AMP [12.579567275436343]
AMP型アルゴリズムの重要な特徴は、それらの力学が状態進化によって正しく記述できることである。
本稿では,十分に統計的なメモリAMP(SS-MAMP)アルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-31T07:25:18Z) - Estimation in Rotationally Invariant Generalized Linear Models via
Approximate Message Passing [21.871513580418604]
本稿では,信号推定のための近接メッセージパッシング(AMP)アルゴリズムの新たなファミリーを提案する。
我々は、状態進化再帰を通じて高次元の限界におけるそれらの性能を厳格に特徴づける。
論文 参考訳(メタデータ) (2021-12-08T15:20:04Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Instance-Optimal Compressed Sensing via Posterior Sampling [101.43899352984774]
後部サンプリング推定器がほぼ最適回復保証を達成できることを示す。
本稿では,Langevin dynamics を用いた深部生成前駆体の後方サンプリング推定器を実装し,MAP よりも精度の高い推定値が得られることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-21T22:51:56Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
線形関数表現のような低複雑度モデルがサンプル効率のよい強化学習を可能にする上で重要な役割を果たしている。
本稿では,オンライン/探索的な方法でサンプルを描画するが,制御不能な方法で以前の状態をバックトラックし,再訪することができる新しいサンプリングプロトコルについて検討する。
この設定に合わせたアルゴリズムを開発し、特徴次元、地平線、逆の準最適ギャップと実際にスケールするサンプル複雑性を実現するが、状態/作用空間のサイズではない。
論文 参考訳(メタデータ) (2021-05-17T17:22:07Z) - Memory Approximate Message Passing [9.116196799517262]
近似メッセージパッシング(amp)は低コスト反復パラメータ推定手法である。
本稿では,一元不変行列に対する低複素メモリAMP(MAMP)を提案する。
論文 参考訳(メタデータ) (2020-12-20T07:42:15Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Approximate Message Passing with Spectral Initialization for Generalized
Linear Models [35.618694363241744]
我々は、近似メッセージパッシング(AMP)に基づく推定器に焦点を当てる。
スペクトル推定器を用いたAMPアルゴリズムを提案する。
また,提案手法の有効性を示す数値的な結果も提供する。
論文 参考訳(メタデータ) (2020-10-07T14:52:35Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。