Estimating Treatment Effects with Observed Confounders and Mediators
- URL: http://arxiv.org/abs/2003.11991v3
- Date: Mon, 14 Jun 2021 05:25:17 GMT
- Title: Estimating Treatment Effects with Observed Confounders and Mediators
- Authors: Shantanu Gupta, Zachary C. Lipton, David Childers
- Abstract summary: Given a causal graph, the do-calculus can express treatment effects as functionals of the observational joint distribution that can be estimated empirically.
Sometimes the do-calculus identifies multiple valid formulae, prompting us to compare the statistical properties of the corresponding estimators.
In this paper, we investigate the over-identified scenario where both confounders and mediators are observed, rendering both estimators valid.
- Score: 25.338901482522648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a causal graph, the do-calculus can express treatment effects as
functionals of the observational joint distribution that can be estimated
empirically. Sometimes the do-calculus identifies multiple valid formulae,
prompting us to compare the statistical properties of the corresponding
estimators. For example, the backdoor formula applies when all confounders are
observed and the frontdoor formula applies when an observed mediator transmits
the causal effect. In this paper, we investigate the over-identified scenario
where both confounders and mediators are observed, rendering both estimators
valid. Addressing the linear Gaussian causal model, we demonstrate that either
estimator can dominate the other by an unbounded constant factor. Next, we
derive an optimal estimator, which leverages all observed variables, and bound
its finite-sample variance. We show that it strictly outperforms the backdoor
and frontdoor estimators and that this improvement can be unbounded. We also
present a procedure for combining two datasets, one with observed confounders
and another with observed mediators. Finally, we evaluate our methods on both
simulated data and the IHDP and JTPA datasets.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Causal Effect Estimation from Observational and Interventional Data
Through Matrix Weighted Linear Estimators [11.384045395629123]
We study causal effect estimation from a mixture of observational and interventional data.
We show that the statistical efficiency in terms of expected squared error can be improved by combining estimators.
arXiv Detail & Related papers (2023-06-09T16:16:53Z) - Exploiting Observation Bias to Improve Matrix Completion [16.57405742112833]
We consider a variant of matrix completion where entries are revealed in a biased manner.
The goal is to exploit the shared information between the bias and the outcome of interest to improve predictions.
We find that with this two-stage algorithm, the estimates have 30x smaller mean squared error compared to traditional matrix completion methods.
arXiv Detail & Related papers (2023-06-07T20:48:35Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Expected Validation Performance and Estimation of a Random Variable's
Maximum [48.83713377993604]
We analyze three statistical estimators for expected validation performance.
We find the unbiased estimator has the highest variance, and the estimator with the smallest variance has the largest bias.
We find that the two biased estimators lead to the fewest incorrect conclusions.
arXiv Detail & Related papers (2021-10-01T18:48:47Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Posterior Ratio Estimation of Latent Variables [14.619879849533662]
In some applications, we want to compare distributions of random variables that are emphinferred from observations.
We study the problem of estimating the ratio between two posterior probability density functions of a latent variable.
arXiv Detail & Related papers (2020-02-15T16:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.