論文の概要: From unbiased MDI Feature Importance to Explainable AI for Trees
- arxiv url: http://arxiv.org/abs/2003.12043v4
- Date: Thu, 30 Sep 2021 14:35:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 21:33:36.518229
- Title: From unbiased MDI Feature Importance to Explainable AI for Trees
- Title(参考訳): 偏見のないMDIの特徴からツリーのための説明可能なAIへ
- Authors: Markus Loecher
- Abstract要約: そこで,本研究では,バグの偏見補正手法と,木々の局所的説明との関係について,共通スレッドを示す。
また、新たに開発されたツリーアルゴリズムのための説明可能なAIに、Inbagデータを含めることによるバイアスも指摘する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We attempt to give a unifying view of the various recent attempts to (i)
improve the interpretability of tree-based models and (ii) debias the the
default variable-importance measure in random Forests, Gini importance. In
particular, we demonstrate a common thread among the out-of-bag based bias
correction methods and their connection to local explanation for trees. In
addition, we point out a bias caused by the inclusion of inbag data in the
newly developed explainable AI for trees algorithms.
- Abstract(参考訳): 私たちは最近の様々な試みを統一的に見ようと試みます
(i)木系モデルの解釈性の向上
(ii)無作為林におけるデフォルト変数重要度尺度であるジニの重要性を嫌う。
特に,本研究では,アウト・オブ・バグに基づくバイアス補正手法の共通スレッドと,樹木の局所的説明との関係を実証する。
さらに,新たに開発されたツリーアルゴリズムのための説明可能なAIにインバッグデータを含めることによるバイアスを指摘する。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - Improving the Validity of Decision Trees as Explanations [2.457872341625575]
葉ノード間の最大誤分類誤差を最小限に抑えるために,浅い木を訓練する。
浅い木の全体的な統計性能は最先端の手法に匹敵する。
論文 参考訳(メタデータ) (2023-06-11T21:14:29Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
本研究では、Boundless DASを用いて、命令に従う間、大規模言語モデルにおける解釈可能な因果構造を効率的に探索する。
私たちの発見は、成長し、最も広くデプロイされている言語モデルの内部構造を忠実に理解するための第一歩です。
論文 参考訳(メタデータ) (2023-05-15T17:15:40Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
我々はIRGR(Iterative Retrieval-Generation Reasoner)と呼ばれるアーキテクチャを提案する。
本モデルでは,テキストの前提からステップバイステップの説明を体系的に生成することにより,与えられた仮説を説明することができる。
前提条件の検索と細分化木の生成に関する既存のベンチマークを上回り、全体の正しさはおよそ300%向上した。
論文 参考訳(メタデータ) (2022-05-18T21:52:11Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
本研究では,異なる回帰モデルに対する決定木の一般化性能について検討する。
これにより、アルゴリズムが新しいデータに一般化するために(あるいは作らない)仮定する帰納的バイアスが引き起こされる。
スパース加法モデルに適合する大規模な決定木アルゴリズムに対して、シャープな2乗誤差一般化を低い境界で証明する。
論文 参考訳(メタデータ) (2021-10-18T21:22:40Z) - Data-driven advice for interpreting local and global model predictions
in bioinformatics problems [17.685881417954782]
条件付き特徴コントリビューション(CFC)は、予測のテキストローカルでケースバイケースの説明を提供する。
両手法で計算した説明を, 公開されている164の分類問題に対して比較した。
ランダム林では,地域とグローバルのSHAP値とCFCスコアの相関関係が極めて高い。
論文 参考訳(メタデータ) (2021-08-13T12:41:39Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies [76.83991682238666]
Branch and Bound (B&B) は、Mixed-Integer Linear Programming Problem (MILP) の解法として一般的に用いられる木探索法である。
本稿では,新しい模倣学習フレームワークを提案し,分岐を表現するための新しい入力機能とアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-12T17:43:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。