Short-term precipitation prediction using deep learning
- URL: http://arxiv.org/abs/2110.01843v1
- Date: Tue, 5 Oct 2021 06:37:24 GMT
- Title: Short-term precipitation prediction using deep learning
- Authors: Guoxing Chen and Wei-Chyung Wang
- Abstract summary: We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
- Score: 5.1589108738893215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate weather prediction is essential for many aspects of life, notably
the early warning of extreme weather events such as rainstorms. Short-term
predictions of these events rely on forecasts from numerical weather models, in
which, despite much improvement in the past decades, outstanding issues remain
concerning model uncertainties, and increasing demands for computation and
storage resources. In recent years, the advance of deep learning offers a
viable alternative approach. Here, we show that a 3D convolutional neural
network using a single frame of meteorology fields as input is capable of
predicting the precipitation spatial distribution. The network is developed
based on 39-years (1980-2018) data of meteorology and daily precipitation over
the contiguous United States. The results bring fundamental advancements in
weather prediction. First, the trained network alone outperforms the
state-of-the-art weather models in predicting daily total precipitation, and
the superiority of the network extends to forecast leads up to 5 days. Second,
combining the network predictions with the weather-model forecasts
significantly improves the accuracy of model forecasts, especially for
heavy-precipitation events. Third, the millisecond-scale inference time of the
network facilitates large ensemble predictions for further accuracy
improvement. These findings strongly support the use of deep-learning in
short-term weather predictions.
Related papers
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
We introduce Stormer, a state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone.
At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals.
On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days.
arXiv Detail & Related papers (2023-12-06T19:46:06Z) - Skilful Precipitation Nowcasting Using NowcastNet [0.0]
Precipitation nowcasting can help relevant institutions to better prepare for such events as they impact agriculture, transport, public health and safety, etc.
We use recently proposed NowcastNet, a physics-conditioned deep generative network, to forecast precipitation for different regions of Europe using satellite images.
arXiv Detail & Related papers (2023-11-29T11:24:52Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.