When Autonomous Systems Meet Accuracy and Transferability through AI: A
Survey
- URL: http://arxiv.org/abs/2003.12948v3
- Date: Mon, 25 May 2020 02:05:38 GMT
- Title: When Autonomous Systems Meet Accuracy and Transferability through AI: A
Survey
- Authors: Chongzhen Zhang, Jianrui Wang, Gary G. Yen, Chaoqiang Zhao, Qiyu Sun,
Yang Tang, Feng Qian, and J\"urgen Kurths
- Abstract summary: We review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability.
We focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning.
We discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems.
- Score: 17.416847623629362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With widespread applications of artificial intelligence (AI), the
capabilities of the perception, understanding, decision-making and control for
autonomous systems have improved significantly in the past years. When
autonomous systems consider the performance of accuracy and transferability,
several AI methods, like adversarial learning, reinforcement learning (RL) and
meta-learning, show their powerful performance. Here, we review the
learning-based approaches in autonomous systems from the perspectives of
accuracy and transferability. Accuracy means that a well-trained model shows
good results during the testing phase, in which the testing set shares a same
task or a data distribution with the training set. Transferability means that
when a well-trained model is transferred to other testing domains, the accuracy
is still good. Firstly, we introduce some basic concepts of transfer learning
and then present some preliminaries of adversarial learning, RL and
meta-learning. Secondly, we focus on reviewing the accuracy or transferability
or both of them to show the advantages of adversarial learning, like generative
adversarial networks (GANs), in typical computer vision tasks in autonomous
systems, including image style transfer, image superresolution, image
deblurring/dehazing/rain removal, semantic segmentation, depth estimation,
pedestrian detection and person re-identification (re-ID). Then, we further
review the performance of RL and meta-learning from the aspects of accuracy or
transferability or both of them in autonomous systems, involving pedestrian
tracking, robot navigation and robotic manipulation. Finally, we discuss
several challenges and future topics for using adversarial learning, RL and
meta-learning in autonomous systems.
Related papers
- A Reusable AI-Enabled Defect Detection System for Railway Using
Ensembled CNN [5.381374943525773]
Defect detection is crucial for ensuring the trustworthiness of railway systems.
Current approaches rely on single deep-learning models, like CNNs.
We propose a reusable AI-enabled defect detection approach.
arXiv Detail & Related papers (2023-11-24T19:45:55Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - A Bayesian Approach to Reinforcement Learning of Vision-Based Vehicular
Control [14.713547378267748]
We present a state-of-the-art reinforcement learning method for autonomous driving.
We trained our system using both ground truth and estimated semantic segmentation input.
The required training time of the system is shown to be lower and the performance on the benchmark superior to competing approaches.
arXiv Detail & Related papers (2021-04-08T14:34:57Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
We propose a visual analytics system, VATLD, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications.
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization.
We also demonstrate the effectiveness of various performance improvement strategies with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.
arXiv Detail & Related papers (2020-09-27T22:39:00Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.