LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking
- URL: http://arxiv.org/abs/2501.08168v1
- Date: Tue, 14 Jan 2025 14:49:45 GMT
- Title: LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking
- Authors: Yukai Ma, Tiantian Wei, Naiting Zhong, Jianbiao Mei, Tao Hu, Licheng Wen, Xuemeng Yang, Botian Shi, Yong Liu,
- Abstract summary: LeapVAD implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions.
System consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning.
- Score: 13.898774643126174
- License:
- Abstract: While autonomous driving technology has made remarkable strides, data-driven approaches still struggle with complex scenarios due to their limited reasoning capabilities. Meanwhile, knowledge-driven autonomous driving systems have evolved considerably with the popularization of visual language models. In this paper, we propose LeapVAD, a novel method based on cognitive perception and dual-process thinking. Our approach implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions. By characterizing these objects through comprehensive attributes - including appearance, motion patterns, and associated risks - LeapVAD achieves more effective environmental representation and streamlines the decision-making process. Furthermore, LeapVAD incorporates an innovative dual-process decision-making module miming the human-driving learning process. The system consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning. LeapVAD also includes reflective mechanisms and a growing memory bank, enabling it to learn from past mistakes and continuously improve its performance in a closed-loop environment. To enhance efficiency, we develop a scene encoder network that generates compact scene representations for rapid retrieval of relevant driving experiences. Extensive evaluations conducted on two leading autonomous driving simulators, CARLA and DriveArena, demonstrate that LeapVAD achieves superior performance compared to camera-only approaches despite limited training data. Comprehensive ablation studies further emphasize its effectiveness in continuous learning and domain adaptation. Project page: https://pjlab-adg.github.io/LeapVAD/.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
This paper proposes a novel hierarchical BEV perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface.
We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes.
We also present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models.
arXiv Detail & Related papers (2024-07-17T11:17:20Z) - Continuously Learning, Adapting, and Improving: A Dual-Process Approach to Autonomous Driving [33.465785037065594]
We introduce LeapAD, a novel paradigm for autonomous driving inspired by the human cognitive process.
Specifically, LeapAD emulates human attention by selecting critical objects relevant to driving decisions.
System consists of an Analytic Process (System-II) for thorough analysis and reasoning, along with a Heuristic Process (System-I) for swift and empirical processing.
arXiv Detail & Related papers (2024-05-24T08:07:28Z) - A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving [21.130543517747995]
This paper introduces the Human-Like Trajectory Prediction (H) model, which adopts a teacher-student knowledge distillation framework.
The "teacher" model mimics the visual processing of the human brain, particularly the functions of the occipital and temporal lobes.
The "student" model focuses on real-time interaction and decision-making, capturing essential perceptual cues for accurate prediction.
arXiv Detail & Related papers (2024-02-29T15:22:26Z) - DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models [30.23228092898916]
We propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge.
Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability.
To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles.
arXiv Detail & Related papers (2023-09-28T09:41:35Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Steadily Learn to Drive with Virtual Memory [11.67256846037979]
This paper proposes an algorithm called Learn to drive with Virtual Memory (LVM) to overcome these problems.
LVM compresses the high-dimensional information into compact latent states and learns a latent dynamic model to summarize the agent's experience.
The effectiveness of LVM is demonstrated by an image-input autonomous driving task.
arXiv Detail & Related papers (2021-02-16T10:46:52Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
We propose a visual analytics system, VATLD, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications.
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization.
We also demonstrate the effectiveness of various performance improvement strategies with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.
arXiv Detail & Related papers (2020-09-27T22:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.