論文の概要: Variable fusion for Bayesian linear regression via spike-and-slab priors
- arxiv url: http://arxiv.org/abs/2003.13299v3
- Date: Wed, 2 Dec 2020 09:06:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 08:21:10.723018
- Title: Variable fusion for Bayesian linear regression via spike-and-slab priors
- Title(参考訳): スパイク・アンド・スラブ前駆によるベイズ線形回帰の可変融合
- Authors: Shengyi Wu, Kaito Shimamura, Kohei Yoshikawa, Kazuaki Murayama,
Shuichi Kawano
- Abstract要約: 本稿では,ベイズ線形回帰モデルを用いた新しい変数融合法を提案する。
スパイク・アンド・スラブ先行は可変核融合を実行するように調整される。
シミュレーション研究と実データ解析により,提案手法は従来の手法よりも優れた性能を示すことが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In linear regression models, fusion of coefficients is used to identify
predictors having similar relationships with a response. This is called
variable fusion. This paper presents a novel variable fusion method in terms of
Bayesian linear regression models. We focus on hierarchical Bayesian models
based on a spike-and-slab prior approach. A spike-and-slab prior is tailored to
perform variable fusion. To obtain estimates of the parameters, we develop a
Gibbs sampler for the parameters. Simulation studies and a real data analysis
show that our proposed method achieves better performance than previous
methods.
- Abstract(参考訳): 線形回帰モデルでは、係数の融合は応答と類似した関係を持つ予測器を特定するために用いられる。
これを変数融合と呼ぶ。
本稿では,ベイズ線形回帰モデルを用いた新しい変数融合法を提案する。
スパイク・アンド・スラブの先行アプローチに基づく階層ベイズモデルに焦点を当てる。
スパイク・アンド・スラブプリアを調整して可変融合を行う。
パラメータを推定するために,パラメータに対するギブスサンプリング器を開発する。
シミュレーション研究と実データ解析により,提案手法が従来の手法よりも優れた性能が得られることを示す。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Overparameterized Multiple Linear Regression as Hyper-Curve Fitting [0.0]
線形モデルは, モデル仮定に反する非線形依存が存在する場合でも, 正確な予測を生成することが証明された。
ハイパーカーブのアプローチは、予測変数のノイズに関する問題を正規化するのに特に適しており、モデルからノイズや「不適切な」予測子を取り除くのに使うことができる。
論文 参考訳(メタデータ) (2024-04-11T15:43:11Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Monte Carlo inference for semiparametric Bayesian regression [5.488491124945426]
本稿では、未知の変換とすべての回帰モデルパラメータの結合後部推論のための単純で汎用的で効率的な戦略を提案する。
これは(1)複数のモデルの不特定性を含む一般条件下での合同後続一貫性を提供し、(2)変換に対する効率的なモンテカルロ(マルコフ連鎖でないモンテカルロ)の推論と重要な特殊ケースに対する全てのパラメータを提供する。
論文 参考訳(メタデータ) (2023-06-08T18:42:42Z) - Prior Density Learning in Variational Bayesian Phylogenetic Parameters
Inference [1.03590082373586]
本稿では,勾配に基づく手法とニューラルネットワークに基づくパラメータ化を用いて,それらのパラメータを学習することで,先行密度の剛性を緩和する手法を提案する。
実験の結果, 分岐長と進化モデルパラメータを推定する上で, 提案手法は強力であることが示唆された。
論文 参考訳(メタデータ) (2023-02-06T01:29:15Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - A flexible empirical Bayes approach to multiple linear regression and connections with penalized regression [8.663322701649454]
大規模多重回帰に対する新しい経験的ベイズ手法を提案する。
当社のアプローチでは、フレキシブルな"適応縮小"と変分近似の2つの主要なアイデアが組み合わさっている。
提案手法では, 後進平均値がペナル化回帰問題を解く。
論文 参考訳(メタデータ) (2022-08-23T12:42:57Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Conjugate priors for count and rounded data regression [0.0]
閉形式後部推論を可能にする共役前部を導入する。
主要な後続関数と予測関数は計算可能であり、直接モンテカルロシミュレーションによって計算可能である。
これらのツールは、線形回帰、基底展開による非線形モデル、モデルと変数選択に広く有用である。
論文 参考訳(メタデータ) (2021-10-23T23:26:01Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
本稿では,入力データと出力データとの対応が不十分な回帰問題について考察する。
ほとんどの既存手法はサンプルサイズが小さい場合にのみ適用できる。
シャッフル回帰問題に対する新しい計算フレームワークであるROBOTを提案する。
論文 参考訳(メタデータ) (2020-11-30T21:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。