Active stereo vision three-dimensional reconstruction by RGB dot pattern
projection and ray intersection
- URL: http://arxiv.org/abs/2003.13322v2
- Date: Tue, 31 Mar 2020 01:44:41 GMT
- Title: Active stereo vision three-dimensional reconstruction by RGB dot pattern
projection and ray intersection
- Authors: Yongcan Shuang and Zhenzhou Wang
- Abstract summary: We propose a new pattern extraction method and a new stereo vision matching method based on our novel structured light pattern.
Experimental results showed that the proposed approach could reconstruct the 3D shape of the object significantly more robustly than state of the art methods.
- Score: 11.878820609988695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active stereo vision is important in reconstructing objects without obvious
textures. However, it is still very challenging to extract and match the
projected patterns from two camera views automatically and robustly. In this
paper, we propose a new pattern extraction method and a new stereo vision
matching method based on our novel structured light pattern. Instead of using
the widely used 2D disparity to calculate the depths of the objects, we use the
ray intersection to compute the 3D shapes directly. Experimental results showed
that the proposed approach could reconstruct the 3D shape of the object
significantly more robustly than state of the art methods that include the
widely used disparity based active stereo vision method, the time of flight
method and the structured light method. In addition, experimental results also
showed that the proposed approach could reconstruct the 3D motions of the
dynamic shapes robustly.
Related papers
- Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
We propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images.
Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering.
A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model.
arXiv Detail & Related papers (2023-11-01T11:46:15Z) - Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception
from Monocular Video [2.2299983745857896]
We present a novel real-time capable learning method that jointly perceives a 3D scene's geometry structure and semantic labels.
We propose an end-to-end cross-dimensional refinement neural network (CDRNet) to extract both 3D mesh and 3D semantic labeling in real time.
arXiv Detail & Related papers (2023-03-16T11:53:29Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation.
We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator.
We present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations.
arXiv Detail & Related papers (2022-09-17T21:28:57Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - Polka Lines: Learning Structured Illumination and Reconstruction for
Active Stereo [52.68109922159688]
We introduce a novel differentiable image formation model for active stereo, relying on both wave and geometric optics, and a novel trinocular reconstruction network.
The jointly optimized pattern, which we dub "Polka Lines," together with the reconstruction network, achieve state-of-the-art active-stereo depth estimates across imaging conditions.
arXiv Detail & Related papers (2020-11-26T04:02:43Z) - Real-time Dense Reconstruction of Tissue Surface from Stereo Optical
Video [10.181846237133167]
We propose an approach to reconstruct dense three-dimensional (3D) model of tissue surface from stereo optical videos in real-time.
The basic idea is to first extract 3D information from video frames by using stereo matching, and then to mosaic the reconstructed 3D models.
Experimental results on ex- and in vivo data showed that the reconstructed 3D models have high resolution texture with an accuracy error of less than 2 mm.
arXiv Detail & Related papers (2020-07-16T19:14:05Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.