論文の概要: Critical Limits in a Bump Attractor Network of Spiking Neurons
- arxiv url: http://arxiv.org/abs/2003.13365v1
- Date: Mon, 30 Mar 2020 11:54:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 07:46:36.923338
- Title: Critical Limits in a Bump Attractor Network of Spiking Neurons
- Title(参考訳): スパイクニューロンのバンプトラクターネットワークにおける臨界限界
- Authors: Alberto Arturo Vergani and Christian Robert Huyck
- Abstract要約: バンプアトラクターネットワークは、入力源に関連するスパイクパターンから生じる競合する神経プロセスを実装するモデルである。
本稿では,様々な正および負の重み付けと,入力スパイク源の大きさの増大によるパラメータ空間の限界について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A bump attractor network is a model that implements a competitive neuronal
process emerging from a spike pattern related to an input source. Since the
bump network could behave in many ways, this paper explores some critical
limits of the parameter space using various positive and negative weights and
an increasing size of the input spike sources The neuromorphic simulation of
the bumpattractor network shows that it exhibits a stationary, a splitting and
a divergent spike pattern, in relation to different sets of weights and input
windows. The balance between the values of positive and negative weights is
important in determining the splitting or diverging behaviour of the spike
train pattern and in defining the minimal firing conditions.
- Abstract(参考訳): バンプアトラクタネットワーク(bump attractor network)は、入力源に関連するスパイクパターンから出現する競合ニューロンプロセスを実装するモデルである。
バンプネットワークは様々な方法で振る舞うことができるため、様々な正の重みと負の重みと入力のスパイクソースのサイズの増加を用いてパラメータ空間の臨界限界を探索する。
正の重み値と負の重み値のバランスは、スパイクトレインパターンの分割または分岐挙動を決定し、最小の発射条件を定義する上で重要である。
関連論文リスト
- Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
スパースディープラーニングは、基礎となるターゲット関数のスパース表現を復元することで、課題に対処する。
構造化された空間によって圧縮されたディープニューラルアーキテクチャは、低レイテンシ推論、データスループットの向上、エネルギー消費の削減を提供する。
本研究では, (i) Spike-and-Slab Group Lasso (SS-GL) と (ii) Spike-and-Slab Group Horseshoe (SS-GHS) を併用した過剰ノードを誘発する構造的疎いベイズニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T17:14:18Z) - Approximating nonlinear functions with latent boundaries in low-rank
excitatory-inhibitory spiking networks [5.955727366271805]
スパイクに基づく興奮抑制スパイクネットワークのための新しいフレームワークを考案した。
本研究は,生体スパイクに基づく計算の力学的理解の出発点となるスパイクネットワークの新しい視点を提案する。
論文 参考訳(メタデータ) (2023-07-18T15:17:00Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - Input correlations impede suppression of chaos and learning in balanced
rate networks [58.720142291102135]
ニューラルネットワークにおける情報符号化と学習は、時間変化による刺激が自発的なネットワーク活動を制御することができるかに依存する。
平衡状態の焼成速度ネットワークでは、リカレントダイナミクスの外部制御は入力の相関に強く依存することを示す。
論文 参考訳(メタデータ) (2022-01-24T19:20:49Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - 'Place-cell' emergence and learning of invariant data with restricted
Boltzmann machines: breaking and dynamical restoration of continuous
symmetries in the weight space [0.0]
本稿では,表現学習のためのニューラルネットワークパラダイムである拘束ボルツマンマシン(RBM)の学習力学について検討する。
ネットワーク重みのランダムな構成から学習が進むにつれて、対称性を破る現象の存在が示される。
この対称性を破る現象は、トレーニングに利用できるデータの量がいくつかの臨界値を超える場合にのみ起こる。
論文 参考訳(メタデータ) (2019-12-30T14:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。