Cross-Global Attention Graph Kernel Network Prediction of Drug
Prescription
- URL: http://arxiv.org/abs/2008.01868v1
- Date: Tue, 4 Aug 2020 22:36:46 GMT
- Title: Cross-Global Attention Graph Kernel Network Prediction of Drug
Prescription
- Authors: Hao-Ren Yao, Der-Chen Chang, Ophir Frieder, Wendy Huang, I-Chia Liang
and Chi-Feng Hung
- Abstract summary: We present an end-to-end, interpretable, deep-learning architecture to learn a graph kernel that predicts the outcome of chronic disease drug prescription.
- Score: 5.132187039529859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an end-to-end, interpretable, deep-learning architecture to learn
a graph kernel that predicts the outcome of chronic disease drug prescription.
This is achieved through a deep metric learning collaborative with a Support
Vector Machine objective using a graphical representation of Electronic Health
Records. We formulate the predictive model as a binary graph classification
problem with an adaptive learned graph kernel through novel cross-global
attention node matching between patient graphs, simultaneously computing on
multiple graphs without training pair or triplet generation. Results using the
Taiwanese National Health Insurance Research Database demonstrate that our
approach outperforms current start-of-the-art models both in terms of accuracy
and interpretability.
Related papers
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Self-supervised Representation Learning on Electronic Health Records
with Graph Kernel Infomax [4.133378723518227]
We propose Graph Kernel Infomax, a self-supervised graph kernel learning approach on the graphical representation of EHR.
Unlike the state-of-the-art, we do not change the graph structure to construct augmented views.
Our approach yields performance on clinical downstream tasks that exceeds the state-of-the-art.
arXiv Detail & Related papers (2022-09-01T16:15:08Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Latent-Graph Learning for Disease Prediction [44.26665239213658]
We show that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification.
Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well.
arXiv Detail & Related papers (2020-03-27T08:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.