Classification of COVID-19 in chest X-ray images using DeTraC deep
convolutional neural network
- URL: http://arxiv.org/abs/2003.13815v3
- Date: Sun, 17 May 2020 12:02:33 GMT
- Title: Classification of COVID-19 in chest X-ray images using DeTraC deep
convolutional neural network
- Authors: Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Medhat Gaber
- Abstract summary: Chest X-ray is the first imaging technique that plays an important role in the diagnosis of COVID-19 disease.
Due to the high availability of large-scale annotated image datasets, great success has been achieved using convolutional neural networks (CNNs) for image recognition and classification.
Thanks to transfer learning, an effective mechanism that can provide a promising solution by transferring knowledge from generic object recognition tasks to domain-specific tasks.
- Score: 6.381149074212898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest X-ray is the first imaging technique that plays an important role in
the diagnosis of COVID-19 disease. Due to the high availability of large-scale
annotated image datasets, great success has been achieved using convolutional
neural networks (CNNs) for image recognition and classification. However, due
to the limited availability of annotated medical images, the classification of
medical images remains the biggest challenge in medical diagnosis. Thanks to
transfer learning, an effective mechanism that can provide a promising solution
by transferring knowledge from generic object recognition tasks to
domain-specific tasks. In this paper, we validate and adapt our previously
developed CNN, called Decompose, Transfer, and Compose (DeTraC), for the
classification of COVID-19 chest X-ray images. DeTraC can deal with any
irregularities in the image dataset by investigating its class boundaries using
a class decomposition mechanism. The experimental results showed the capability
of DeTraC in the detection of COVID-19 cases from a comprehensive image dataset
collected from several hospitals around the world. High accuracy of 95.12%
(with a sensitivity of 97.91%, a specificity of 91.87%, and a precision of
93.36%) was achieved by DeTraC in the detection of COVID-19 X-ray images from
normal, and severe acute respiratory syndrome cases.
Related papers
- Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
This paper investigates the concept of transfer learning using two of the most well-known VGGNet architectures, namely VGG-16 and VGG-19.
We generated two different datasets to evaluate the performance of the proposed system for the identification of positive Covid-19 instances in a multiclass and binary classification problems.
arXiv Detail & Related papers (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - Fused Deep Convolutional Neural Network for Precision Diagnosis of
COVID-19 Using Chest X-Ray Images [0.0]
We propose a computer-aided diagnosis (CAD) to accurately classify chest X-ray scans of COVID-19 and normal subjects by fine-tuning several neural networks.
Using k-fold cross-validation and a bagging ensemble, we achieve an accuracy of 99.7% and a sensitivity of 100%.
arXiv Detail & Related papers (2020-09-15T02:27:20Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
The use of chest X-ray images for radiological assessment is one of the essential screening techniques.
We propose a parallel-dilated convolutional neural network based COVID-19 detection system from chest x-ray images.
arXiv Detail & Related papers (2020-07-29T12:28:16Z) - An Uncertainty-aware Transfer Learning-based Framework for Covid-19
Diagnosis [10.832659320593347]
This paper proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images.
Four popular convolutional neural networks (CNNs) are applied to extract deep features from chest X-ray and computed tomography (CT) images.
Extracted features are then processed by different machine learning and statistical modelling techniques to identify COVID-19 cases.
arXiv Detail & Related papers (2020-07-26T20:15:01Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.