論文の概要: The Discrete Gaussian for Differential Privacy
- arxiv url: http://arxiv.org/abs/2004.00010v6
- Date: Mon, 18 Nov 2024 02:32:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:29:57.289454
- Title: The Discrete Gaussian for Differential Privacy
- Title(参考訳): 微分プライバシーのための離散ガウス
- Authors: Clément L. Canonne, Gautam Kamath, Thomas Steinke,
- Abstract要約: 微分プライベートシステムを構築するための重要なツールは、機密データセットで評価された関数の出力にガウスノイズを追加することである。
これまでの研究は、一見無害な数値エラーがプライバシーを完全に破壊することを示した。
差分プライバシーの文脈において、離散ガウシアンを導入・分析する。
- 参考スコア(独自算出の注目度): 26.179150185540514
- License:
- Abstract: A key tool for building differentially private systems is adding Gaussian noise to the output of a function evaluated on a sensitive dataset. Unfortunately, using a continuous distribution presents several practical challenges. First and foremost, finite computers cannot exactly represent samples from continuous distributions, and previous work has demonstrated that seemingly innocuous numerical errors can entirely destroy privacy. Moreover, when the underlying data is itself discrete (e.g., population counts), adding continuous noise makes the result less interpretable. With these shortcomings in mind, we introduce and analyze the discrete Gaussian in the context of differential privacy. Specifically, we theoretically and experimentally show that adding discrete Gaussian noise provides essentially the same privacy and accuracy guarantees as the addition of continuous Gaussian noise. We also present an simple and efficient algorithm for exact sampling from this distribution. This demonstrates its applicability for privately answering counting queries, or more generally, low-sensitivity integer-valued queries.
- Abstract(参考訳): 微分プライベートシステムを構築するための重要なツールは、機密データセットで評価された関数の出力にガウスノイズを追加することである。
残念なことに、継続的分散を使うことには、いくつかの実践的な課題がある。
まず第一に、有限のコンピュータは、連続分布のサンプルを正確に表現することはできない。
さらに、基礎となるデータがそれ自体が離散的である場合(例えば人口数)、連続的なノイズを加えることで、結果の解釈が難しくなる。
これらの欠点を念頭に置いて、差分プライバシーの文脈で離散ガウシアンを導入・分析する。
具体的には,離散ガウス雑音の追加は連続ガウス雑音の追加と本質的に同一のプライバシーと精度を保証することを理論的,実験的に示す。
また、この分布から正確なサンプリングを行うための単純で効率的なアルゴリズムを提案する。
これは、カウントクエリ、またはより一般的には、低感度の整数値クエリをプライベートに答えることが可能であることを示している。
関連論文リスト
- Some Constructions of Private, Efficient, and Optimal $K$-Norm and Elliptic Gaussian Noise [54.34628844260993]
微分プライベートな計算は、しばしば$d$次元統計学の感度に束縛されて始まる。
純粋な微分プライバシーのために、$K$-normメカニズムは統計学の感度空間に合わせた規範を用いてこのアプローチを改善することができる。
本稿では,総和,数,投票の単純な統計量について両問題を解く。
論文 参考訳(メタデータ) (2023-09-27T17:09:36Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Privacy of Noisy Stochastic Gradient Descent: More Iterations without
More Privacy Loss [34.66940399825547]
業界は単純なアルゴリズムを広く採用している:騒音を伴うグラディエントDescent(グラディエントLangevin Dynamics)
このアルゴリズムのプライバシ損失に関する疑問は、バウンドドメイン上の滑らかな凸損失の一見単純な設定であっても、まだオープンである。
我々は、差分プライバシーを一定の要因まで特徴づけ、小さなバーンイン期間の後、SGDの実行がこれ以上のプライバシーを漏らさないことを示す。
論文 参考訳(メタデータ) (2022-05-27T02:09:55Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
この仮定から逸脱すると、実際により良い統計的推定結果が得られることが示される。
特に、最適な雑音分布は、データと異なり、また、別の家族からさえも異なる。
論文 参考訳(メタデータ) (2022-03-02T13:59:20Z) - Differential privacy for symmetric log-concave mechanisms [0.0]
データベースクエリ結果にランダムノイズを加えることは、プライバシを達成するための重要なツールである。
我々は、すべての対称および対数凹形ノイズ密度に対して、$(epsilon, delta)$-differential privacyに対して十分かつ必要な条件を提供する。
論文 参考訳(メタデータ) (2022-02-23T10:20:29Z) - Learning Numeric Optimal Differentially Private Truncated Additive
Mechanisms [5.079561894598125]
実効性境界が強い付加的なメカニズムに対して,トランクテッドノイズを学習するためのツールを提案する。
平均単調な単調な音から, 対称性やその新しい音を考慮すれば十分であることを示す。
感度境界機構については, 平均単調な単調なノイズから, 対称性とその新しさを考えるのに十分であることを示す。
論文 参考訳(メタデータ) (2021-07-27T17:22:57Z) - The Distributed Discrete Gaussian Mechanism for Federated Learning with
Secure Aggregation [28.75998313625891]
本稿では,データを適切に識別し,セキュアアグリゲーションを行う前に離散ガウス雑音を付加する総合的なエンドツーエンドシステムを提案する。
私達の理論的保証はコミュニケーション、プライバシーおよび正確さ間の複雑な緊張を強調します。
論文 参考訳(メタデータ) (2021-02-12T08:20:18Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。