Personal Health Knowledge Graphs for Patients
- URL: http://arxiv.org/abs/2004.00071v2
- Date: Thu, 7 May 2020 10:40:21 GMT
- Title: Personal Health Knowledge Graphs for Patients
- Authors: Nidhi Rastogi and Mohammed J. Zaki
- Abstract summary: Existing patient data analytics platforms fail to incorporate information that has context, is personal, and topical to patients.
For a recommendation system to give a suitable response to a query, it should consider personal information about the patient's health history.
- Score: 18.71820749477523
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing patient data analytics platforms fail to incorporate information
that has context, is personal, and topical to patients. For a recommendation
system to give a suitable response to a query or to derive meaningful insights
from patient data, it should consider personal information about the patient's
health history, including but not limited to their preferences, locations, and
life choices that are currently applicable to them. In this review paper, we
critique existing literature in this space and also discuss the various
research challenges that come with designing, building, and operationalizing a
personal health knowledge graph (PHKG) for patients.
Related papers
- Transforming Wearable Data into Health Insights using Large Language Model Agents [25.92023580781527]
We introduce the Personal Health Insights Agent (PHIA), an agent system to analyze and interpret behavioral health data from wearables.
Based on 650 hours of human and expert evaluation, PHIA can accurately address over 84% of factual numerical questions and more than 83% of crowd-sourced open-ended questions.
arXiv Detail & Related papers (2024-06-10T17:00:54Z) - Patient-Centric Knowledge Graphs: A Survey of Current Methods,
Challenges, and Applications [2.913761513290171]
Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare that focuses on individualized patient care.
PCKGs integrate various types of health data to provide healthcare professionals with a comprehensive understanding of a patient's health.
This literature review explores the methodologies, challenges, and opportunities associated with PCKGs.
arXiv Detail & Related papers (2024-02-20T00:07:55Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations.
Our knowledge graphs include information about existing patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK.
arXiv Detail & Related papers (2023-06-17T23:35:51Z) - Developing a Robust Computable Phenotype Definition Workflow to Describe
Health and Disease in Observational Health Research [0.6465251961564604]
Health informatics is built upon patient health data.
standardization is required to compute population statistics that are common metrics used in fields such as epidemiology.
While standards exist to structure and analyze patient data, analogous best practices for rigorously defining patient populations do not exist.
arXiv Detail & Related papers (2023-03-30T15:29:54Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Doctor Recommendation in Online Health Forums via Expertise Learning [12.264865055778388]
This paper studies a novel task of doctor recommendation to enable automatic pairing of a patient to a doctor with relevant expertise.
We study the joint effects of their profiles and previous dialogues with other patients and explore their interactions via self-learning.
For experiments, a large-scale dataset is collected from Chunyu Yisheng, a Chinese online health forum.
arXiv Detail & Related papers (2022-03-06T10:39:48Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.