From Patient Consultations to Graphs: Leveraging LLMs for Patient Journey Knowledge Graph Construction
- URL: http://arxiv.org/abs/2503.16533v1
- Date: Tue, 18 Mar 2025 14:44:28 GMT
- Title: From Patient Consultations to Graphs: Leveraging LLMs for Patient Journey Knowledge Graph Construction
- Authors: Hassan S. Al Khatib, Sudip Mittal, Shahram Rahimi, Nina Marhamati, Sean Bozorgzad,
- Abstract summary: Patient Journey Knowledge Graphs (PJKGs) represent a novel approach to addressing the challenge of fragmented healthcare data.<n>PJKGs process and structure both formal clinical documentation and unstructured patient-provider conversations.<n>These graphs encapsulate temporal and causal relationships among clinical encounters, diagnoses, treatments, and outcomes.
- Score: 3.0874677990361246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transition towards patient-centric healthcare necessitates a comprehensive understanding of patient journeys, which encompass all healthcare experiences and interactions across the care spectrum. Existing healthcare data systems are often fragmented and lack a holistic representation of patient trajectories, creating challenges for coordinated care and personalized interventions. Patient Journey Knowledge Graphs (PJKGs) represent a novel approach to addressing the challenge of fragmented healthcare data by integrating diverse patient information into a unified, structured representation. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process and structure both formal clinical documentation and unstructured patient-provider conversations. These graphs encapsulate temporal and causal relationships among clinical encounters, diagnoses, treatments, and outcomes, enabling advanced temporal reasoning and personalized care insights. The research evaluates four different LLMs, such as Claude 3.5, Mistral, Llama 3.1, and Chatgpt4o, in their ability to generate accurate and computationally efficient knowledge graphs. Results demonstrate that while all models achieved perfect structural compliance, they exhibited variations in medical entity processing and computational efficiency. The paper concludes by identifying key challenges and future research directions. This work contributes to advancing patient-centric healthcare through the development of comprehensive, actionable knowledge graphs that support improved care coordination and outcome prediction.
Related papers
- Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis [2.303486126296845]
Large Language Models (LLMs) have shown promise in delivering interactive health advice.
Traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data.
This paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights.
arXiv Detail & Related papers (2024-06-24T01:22:54Z) - Patient-Centric Knowledge Graphs: A Survey of Current Methods,
Challenges, and Applications [2.913761513290171]
Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare that focuses on individualized patient care.
PCKGs integrate various types of health data to provide healthcare professionals with a comprehensive understanding of a patient's health.
This literature review explores the methodologies, challenges, and opportunities associated with PCKGs.
arXiv Detail & Related papers (2024-02-20T00:07:55Z) - Knowledge Graph Representations to enhance Intensive Care Time-Series
Predictions [4.660203987415476]
Our proposed methodology integrates medical knowledge with ICU data, improving clinical decision modeling.
It combines graph representations with vital signs and clinical reports, enhancing performance.
Our model includes an interpretability component to understand how knowledge graph nodes affect predictions.
arXiv Detail & Related papers (2023-11-13T09:11:55Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations.
Our knowledge graphs include information about existing patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK.
arXiv Detail & Related papers (2023-06-17T23:35:51Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
We propose a solution to model patient trajectories that combines different types of information and considers the temporal aspect of clinical data.
The developed solution was evaluated on two different clinical outcomes, unexpected patient readmission and disease progression.
arXiv Detail & Related papers (2022-09-09T10:20:54Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Collaborative Graph Learning with Auxiliary Text for Temporal Event
Prediction in Healthcare [16.40827965484983]
We propose a collaborative graph learning model to explore patient-disease interactions and medical domain knowledge.
Our solution is able to capture structural features of both patients and diseases.
We conduct experiments on two important healthcare problems to show the competitive prediction performance of the proposed method.
arXiv Detail & Related papers (2021-05-16T23:11:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.