論文の概要: A Semi-Dynamic Bus Routing Infrastructure based on MBTA Bus Data
- arxiv url: http://arxiv.org/abs/2004.00427v1
- Date: Sun, 29 Mar 2020 13:07:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 13:41:09.801217
- Title: A Semi-Dynamic Bus Routing Infrastructure based on MBTA Bus Data
- Title(参考訳): MBTAバスデータに基づく半動的バスルーティング基盤
- Authors: Movses Musaelian, Anane Boateng, Md Zakirul Alam Bhuiyan
- Abstract要約: 本稿では,データ駆動型で,バス輸送における関連するパラメータに応答する半動的バスルーティングフレームワークを提案する。
このアプローチは、既存のシステムよりも賢く、よりダイナミックな、非常に有望なルーティングインフラストラクチャを生み出します。
- 参考スコア(独自算出の注目度): 9.192967576803776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transportation is quickly evolving in the emerging smart city ecosystem with
personalized ride sharing services quickly advancing. Yet, the public bus
infrastructure has been slow to respond to these trends. With our research, we
propose a semi-dynamic bus routing framework that is data-driven and responsive
to relevant parameters in bus transport. We use newly published bus event data
from a bus line in Boston and several algorithmic heuristics to create this
framework and demonstrate the capabilities and results. We find that this
approach yields a very promising routing infrastructure that is smarter and
more dynamic than the existing system.
- Abstract(参考訳): スマートシティの新興エコシステムでは交通が急速に進化し、パーソナライズされたライドシェアリングサービスが急速に進歩している。
しかし、公共バスのインフラはこうした傾向に対応するのが遅い。
本研究では,データ駆動型で,バス輸送における関連するパラメータに応答する半動的バスルーティングフレームワークを提案する。
ボストンのバス路線から新たに公開されたバスイベントデータと、このフレームワークを作成し、その機能と結果を示すアルゴリズム的ヒューリスティックスを使用します。
このアプローチは、既存のシステムよりも賢く、よりダイナミックな、非常に有望なルーティングインフラストラクチャを生み出します。
関連論文リスト
- Online design of dynamic networks [4.6289929100615]
本稿では,動的ネットワークのオンライン設計手法を提案する。
我々はモンテカルロ木探索に基づく転がり地平線で、このオンラインデザイン問題に取り組む。
オンラインネットワーク設計の可能性は、未来的な公共交通ネットワークの設計のために示される。
論文 参考訳(メタデータ) (2024-10-11T14:50:31Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
本稿では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリの提供を目的とした,新しい階層的BEV知覚パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
また、マルチモジュールラーニング(MML)アプローチを提案し、複数のモデルの相乗的かつ反復的な訓練により性能を向上させる。
論文 参考訳(メタデータ) (2024-07-17T11:17:20Z) - A Dynamic Model for Bus Arrival Time Estimation based on Spatial
Patterns using Machine Learning [1.2891210250935146]
限られたデータセットを用いて到着時刻を予測するため,バス到着予測モデルを提案する。
インド・トゥムクル市の交通路の一つ、トゥムクル(Tumakuru)が選択され、2つの空間パターンに分けられる。
前回の旅行情報と機械学習モデルを用いてバス到着時刻を動的に予測するモデルを開発し、下流のバス停で到着時刻を推定する。
論文 参考訳(メタデータ) (2022-10-03T06:35:03Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph
Learning Framework [10.75153377806738]
グラフ畳み込みネットワーク(GCN)に基づく多パターン乗客フロー予測フレームワークMPGCNを提案する。
我々はGCNを用いて、有用なトポロジ情報から特徴を抽出し、バスの乗客に隠された移動パターンを認識するディープクラスタリング手法を導入する。
我々の知る限り、この論文は、グラフ学習からバスの乗客フローを予測するためのマルチパターンアプローチを採用した最初の試みである。
論文 参考訳(メタデータ) (2022-02-17T06:17:23Z) - Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes [99.54065757867554]
エンド・ツー・エンド(E2E)遅延の最小化を目的としたAANETにおけるルーティングのための深層強化学習を起動する。
最深Qネットワーク(DQN)は、転送ノードで観測される最適ルーティング決定と局所的な地理的情報との関係をキャプチャする。
フィードバック機構を組み込んだディープバリューネットワーク(DVN)を用いて,システムのダイナミクスに関する知識をさらに活用する。
論文 参考訳(メタデータ) (2021-10-28T14:18:56Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Estimating the Robustness of Public Transport Systems Using Machine
Learning [62.997667081978825]
公共交通機関の計画は、多くのステップを含む非常に複雑なプロセスである。
乗客の観点からの堅牢性の統合により、作業はさらに困難になる。
本稿では,機械学習の手法を用いたシナリオベースロバストネス近似の新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-10T05:52:56Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - Reducing Bus Bunching with Asynchronous Multi-Agent Reinforcement
Learning [11.168121941015013]
バスフラッキングは、バスサービスの信頼性と効率を損なう一般的な現象である。
経路レベルのバスフリート制御を非同期マルチエージェント強化学習問題として定式化する。
古典的なアクタークリティカルアーキテクチャを拡張して、非同期問題を扱う。
論文 参考訳(メタデータ) (2021-05-02T02:08:07Z) - BusTr: Predicting Bus Travel Times from Real-Time Traffic [11.832652376678295]
本稿では,道路交通予測をバス遅延予測に変換する機械学習モデルBusTrを提案する。
これはGoogle Mapsによって、公式のリアルタイムバス追跡が提供されていない世界の公共交通システムの大部分に利用されている。
論文 参考訳(メタデータ) (2020-07-02T05:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。