Surrogate-assisted performance prediction for data-driven knowledge
discovery algorithms: application to evolutionary modeling of clinical
pathways
- URL: http://arxiv.org/abs/2004.01123v2
- Date: Fri, 7 Jan 2022 22:32:35 GMT
- Title: Surrogate-assisted performance prediction for data-driven knowledge
discovery algorithms: application to evolutionary modeling of clinical
pathways
- Authors: Anastasia A. Funkner, Aleksey N. Yakovlev, Sergey V. Kovalchuk
- Abstract summary: The paper proposes and investigates an approach for surrogate-assisted performance prediction of data-driven knowledge discovery algorithms.
The approach is based on the identification of surrogate models for prediction of the target algorithm's quality and performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper proposes and investigates an approach for surrogate-assisted
performance prediction of data-driven knowledge discovery algorithms. The
approach is based on the identification of surrogate models for prediction of
the target algorithm's quality and performance. The proposed approach was
implemented and investigated as applied to an evolutionary algorithm for
discovering clusters of interpretable clinical pathways in electronic health
records of patients with acute coronary syndrome. Several clustering metrics
and execution time were used as the target quality and performance metrics
respectively. An analytical software prototype based on the proposed approach
for the prediction of algorithm characteristics and feature analysis was
developed to provide a more interpretable prediction of the target algorithm's
performance and quality that can be further used for parameter tuning.
Related papers
- Comparative Study of Machine Learning Algorithms in Detecting Cardiovascular Diseases [0.0]
The detection of cardiovascular diseases (CVD) using machine learning techniques represents a significant advancement in medical diagnostics.
This study explores a comparative analysis of various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and XGBoost.
The findings highlight the efficacy of ensemble methods and advanced algorithms in providing reliable predictions, thereby offering a comprehensive framework for CVD detection.
arXiv Detail & Related papers (2024-05-27T11:29:54Z) - Human Expertise in Algorithmic Prediction [16.104330706951004]
We introduce a novel framework for incorporating human expertise into algorithmic predictions.
Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms.
arXiv Detail & Related papers (2024-02-01T17:23:54Z) - Dataset Optimization for Chronic Disease Prediction with Bio-Inspired
Feature Selection [0.32634122554913997]
The study contributes to the advancement of predictive analytics in the realm of chronic diseases.
The potential impact of this work extends to early intervention, precision medicine, and improved patient outcomes.
arXiv Detail & Related papers (2023-12-17T18:18:34Z) - An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes [0.0]
The research has included four original proposals of algorithms dedicated to neural network architecture search.
Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods.
The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.
arXiv Detail & Related papers (2023-09-25T11:06:35Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
We introduce an algorithm-agnostic explainable surrogate-modeling approach to estimate latent properties of lifelong learning algorithms.
We validate the approach for estimating these properties via experiments on synthetic data.
arXiv Detail & Related papers (2022-07-28T20:58:13Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
We introduce a general design approach for algorithms that learn predictors.
We apply techniques from online learning to learn against adversarial instances, tune robustness-consistency trade-offs, and obtain new statistical guarantees.
We demonstrate the effectiveness of our approach at deriving learning algorithms by analyzing methods for bipartite matching, page migration, ski-rental, and job scheduling.
arXiv Detail & Related papers (2022-02-18T17:25:43Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
We present nonparametric algorithms for estimating optimal individualized treatment rules.
The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature.
arXiv Detail & Related papers (2020-01-31T22:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.