論文の概要: IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation
- arxiv url: http://arxiv.org/abs/2004.01299v1
- Date: Thu, 2 Apr 2020 23:05:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 09:47:02.066660
- Title: IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation
- Title(参考訳): IVFS:高次元トポロジー保存のための簡易かつ効率的な特徴選択
- Authors: Xiaoyun Li, Chengxi Wu, Ping Li
- Abstract要約: 本稿では,サンプル類似性保存を向上する簡易かつ効果的な特徴選択アルゴリズムを提案する。
提案アルゴリズムは、全データの対距離と位相パターンを適切に保存することができる。
- 参考スコア(独自算出の注目度): 33.424663018395684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection is an important tool to deal with high dimensional data. In
unsupervised case, many popular algorithms aim at maintaining the structure of
the original data. In this paper, we propose a simple and effective feature
selection algorithm to enhance sample similarity preservation through a new
perspective, topology preservation, which is represented by persistent diagrams
from the context of computational topology. This method is designed upon a
unified feature selection framework called IVFS, which is inspired by random
subset method. The scheme is flexible and can handle cases where the problem is
analytically intractable. The proposed algorithm is able to well preserve the
pairwise distances, as well as topological patterns, of the full data. We
demonstrate that our algorithm can provide satisfactory performance under a
sharp sub-sampling rate, which supports efficient implementation of our
proposed method to large scale datasets. Extensive experiments validate the
effectiveness of the proposed feature selection scheme.
- Abstract(参考訳): 特徴選択は高次元データを扱う重要なツールである。
教師なしの場合、多くの一般的なアルゴリズムは元のデータの構造を維持することを目的としている。
本稿では,新しい視点, トポロジ保存という, 計算トポロジの文脈から, 永続的な図式で表される, サンプル類似性保存を強化するための, 単純かつ効果的な特徴選択アルゴリズムを提案する。
この手法は、ランダムサブセット法にインスパイアされたIVFSと呼ばれる統合された特徴選択フレームワークに基づいて設計されている。
このスキームは柔軟であり、問題が解析的に難解な場合に対処できる。
提案手法は,全データの位相パターンと同様に対距離を良好に保存することができる。
本研究では,提案手法の大規模データセットへの効率的な実装を支援する,鋭いサブサンプリング率で十分な性能を提供できることを示す。
広範な実験により,提案手法の有効性が検証された。
関連論文リスト
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
本稿では,分散動的安全スクリーニング(DDSS)手法を提案し,共有メモリアーキテクチャと分散メモリアーキテクチャにそれぞれ適用する。
提案手法は, 線形収束率を低次複雑度で達成し, 有限個の繰り返しにおいてほとんどすべての不活性な特徴をほぼ確実に除去できることを示す。
論文 参考訳(メタデータ) (2022-04-23T02:45:55Z) - Parallel feature selection based on the trace ratio criterion [4.30274561163157]
本研究は,PFSTを用いた並列特徴選択という,新しい並列特徴選択手法を提案する。
提案手法は,Fisher's Discriminant Analysisで用いられるクラス分離性の尺度であるトレース基準を用いて特徴的有用性を評価する。
実験により,本手法は,比較対象の他の手法による時間的差のごく一部で,少数の特徴セットを生成できることが確認された。
論文 参考訳(メタデータ) (2022-03-03T10:50:33Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Low-rank Dictionary Learning for Unsupervised Feature Selection [11.634317251468968]
低ランク表現に辞書学習のアイデアを適用することで、教師なしの新たな特徴選択手法を導入する。
非教師付き特徴選択のための統一目的関数は、$ell_2,1$-norm正規化によってスパースな方法で提案される。
実験の結果,提案手法は最先端のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-06-21T13:39:10Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
非相関的かつ識別的特徴の選択は、教師なしの機能選択の重要な問題である。
非相関制約と $ell_2,1$-norm 正規化によって課される新しい一般化回帰モデルを提案する。
それは同時に同じ近所に属するこれらのデータ ポイントの分散を減らすこと無相関および差別的な特徴を選ぶことができます。
論文 参考訳(メタデータ) (2020-12-27T09:07:26Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - Feature Robust Optimal Transport for High-dimensional Data [125.04654605998618]
本研究では,高次元データに対する特徴量ロバスト最適輸送(FROT)を提案する。
実世界の意味対応データセットにおいて,FROTアルゴリズムが最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-05-25T14:07:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。