論文の概要: Deep Recurrent Modelling of Stationary Bitcoin Price Formation Using the
Order Flow
- arxiv url: http://arxiv.org/abs/2004.01499v1
- Date: Tue, 31 Mar 2020 18:13:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 00:40:34.201206
- Title: Deep Recurrent Modelling of Stationary Bitcoin Price Formation Using the
Order Flow
- Title(参考訳): 秩序流を用いた定常Bitcoin価格形成の深部反復モデリング
- Authors: Ye-Sheen Lim, Denise Gorse
- Abstract要約: 本稿では,高周波指向性価格変動の定常モデリングのための順序流に基づく深部再帰モデルを提案する。
我々は、Bitcoinのトレーディングが極めて不安定なバブルトラブルに移行したとしても、再トレーニングなしでは、提案されたモデルは時間的に安定していることを示した。
この結果の意義は、ディープラーニングを用いた価格形成をモデル化する文献において、既存の最先端モデルと比較することで示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose a deep recurrent model based on the order flow for
the stationary modelling of the high-frequency directional prices movements.
The order flow is the microsecond stream of orders arriving at the exchange,
driving the formation of prices seen on the price chart of a stock or currency.
To test the stationarity of our proposed model we train our model on data
before the 2017 Bitcoin bubble period and test our model during and after the
bubble. We show that without any retraining, the proposed model is temporally
stable even as Bitcoin trading shifts into an extremely volatile "bubble
trouble" period. The significance of the result is shown by benchmarking
against existing state-of-the-art models in the literature for modelling price
formation using deep learning.
- Abstract(参考訳): 本稿では,高周波指向性価格変動の定常モデリングにおける順序流に基づく深部再帰モデルを提案する。
注文フローは取引所に到着する注文のマイクロ秒ストリームであり、株価チャートや通貨の価格表に表示される価格の形成を駆動する。
提案モデルの定常性をテストするために、2017年のbitcoinバブル前のデータでモデルをトレーニングし、バブルの前後でモデルをテストする。
我々は、Bitcoinのトレーディングが極めて不安定なバブルトラブルに移行したとしても、再トレーニングなしでは、提案されたモデルは一時的に安定していることを示した。
この結果の意義は、ディープラーニングを用いた価格形成をモデル化する文献において、既存の最先端モデルと比較することで示される。
関連論文リスト
- Comparative Study of Bitcoin Price Prediction [0.0]
一般化を高めるために5倍のクロスバリデーションを使用し、L2正規化を利用して過度な適合とノイズを低減する。
我々の研究は、GRUsモデルがBitcoinの価格を予測するLSTMモデルよりも精度が高いことを示した。
論文 参考訳(メタデータ) (2024-05-13T18:10:34Z) - Hawkes-based cryptocurrency forecasting via Limit Order Book data [1.6236898718152877]
本稿では,ホークスモデルに根ざしたリミットオーダーブック(LOB)データを用いた新しい予測アルゴリズムを提案する。
我々の手法は、将来の金融相互作用の予測を活用することで、返却サインの正確な予測を提供する。
提案手法の有効性は,50シナリオにわたるモンテカルロシミュレーションを用いて検証した。
論文 参考訳(メタデータ) (2023-12-21T16:31:07Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - BIRP: Bitcoin Information Retrieval Prediction Model Based on Multimodal
Pattern Matching [2.2945578854972446]
CC情報から類似したPCの動きをランク付けする手法を提案する。
追加機能としてこれを活用することで,モデルの方向性予測能力が向上することを示す。
非常に不安定な価格のため、私たちのランク付けと方向性予測の方法論をBitcoinに適用する。
論文 参考訳(メタデータ) (2023-08-14T07:04:23Z) - Towards More Robust and Accurate Sequential Recommendation with
Cascade-guided Adversarial Training [54.56998723843911]
シーケンシャルレコメンデーションモデルの性質に特有の2つの特性は、その堅牢性を損なう可能性がある。
本稿では,シーケンシャルレコメンデーションモデルに特化して設計された,新たな逆行訓練法であるカスケード誘導逆行訓練を提案する。
論文 参考訳(メタデータ) (2023-04-11T20:55:02Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - Forex Trading Volatility Prediction using Neural Network Models [6.09960572440709]
本研究では,日々のボラティリティに関する経験的パターンのガイダンスを用いて,ディープラーニングネットワークの構築方法について述べる。
数値計算の結果,多値ペアの入力によるマルチスケール長短期メモリ(LSTM)モデルが常に最先端の精度を実現していることがわかった。
論文 参考訳(メタデータ) (2021-12-02T12:33:12Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
本稿では,株価予測において非常に高い精度が得られるディープラーニングに基づく回帰モデルについて述べる。
我々は4つの畳み込みニューラルネットワーク(CNN)と5つの長期記憶と短期記憶に基づくディープラーニングモデルを構築し、将来の株価を正確に予測する。
論文 参考訳(メタデータ) (2020-11-07T16:07:10Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。