論文の概要: Hawkes-based cryptocurrency forecasting via Limit Order Book data
- arxiv url: http://arxiv.org/abs/2312.16190v1
- Date: Thu, 21 Dec 2023 16:31:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 13:05:31.117324
- Title: Hawkes-based cryptocurrency forecasting via Limit Order Book data
- Title(参考訳): リミット・オーダーブックのデータによるホークスの暗号通貨予測
- Authors: Raffaele Giuseppe Cestari, Filippo Barchi, Riccardo Busetto, Daniele
Marazzina, Simone Formentin
- Abstract要約: 本稿では,ホークスモデルに根ざしたリミットオーダーブック(LOB)データを用いた新しい予測アルゴリズムを提案する。
我々の手法は、将来の金融相互作用の予測を活用することで、返却サインの正確な予測を提供する。
提案手法の有効性は,50シナリオにわたるモンテカルロシミュレーションを用いて検証した。
- 参考スコア(独自算出の注目度): 1.6236898718152877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately forecasting the direction of financial returns poses a formidable
challenge, given the inherent unpredictability of financial time series. The
task becomes even more arduous when applied to cryptocurrency returns, given
the chaotic and intricately complex nature of crypto markets. In this study, we
present a novel prediction algorithm using limit order book (LOB) data rooted
in the Hawkes model, a category of point processes. Coupled with a continuous
output error (COE) model, our approach offers a precise forecast of return
signs by leveraging predictions of future financial interactions. Capitalizing
on the non-uniformly sampled structure of the original time series, our
strategy surpasses benchmark models in both prediction accuracy and cumulative
profit when implemented in a trading environment. The efficacy of our approach
is validated through Monte Carlo simulations across 50 scenarios. The research
draws on LOB measurements from a centralized cryptocurrency exchange where the
stablecoin Tether is exchanged against the U.S. dollar.
- Abstract(参考訳): 金融リターンの方向性を正確に予測することは、金融時系列の本質的な予測不可能性を考えると、恐ろしい課題となる。
暗号市場のカオス的かつ複雑な性質を考えると、暗号通貨のリターンに適用した場合、このタスクはさらに困難になる。
本研究では,点過程のカテゴリであるホークスモデルに根ざしたリミットオーダーブック(LOB)データを用いた新しい予測アルゴリズムを提案する。
提案手法は, 連続出力誤差(COE)モデルと組み合わせて, 将来の金融相互作用の予測を利用して, 戻り信号の正確な予測を行う。
当初の時系列の非一様サンプル構造から得られた戦略は,取引環境における予測精度と累積利益の両方でベンチマークモデルを上回った。
本手法の有効性は,50シナリオにわたるモンテカルロシミュレーションにより検証した。
この研究は、stablecoinのテザーを米国ドルと交換する集中型暗号通貨取引所からのlob測定に基づいている。
関連論文リスト
- Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Forecasting Cryptocurrency Prices Using Deep Learning: Integrating
Financial, Blockchain, and Text Data [3.8443430569753025]
我々は、先進的なディープラーニングNLP手法を用いて、公開感情が暗号通貨評価に与える影響を分析する。
我々は,NLPデータ統合の有無にかかわらず,各種MLモデルの性能を比較した。
我々は,Twitter-RoBERTaやBART MNLIといった事前学習モデルが,市場感情を捉える上で極めて有効であることを発見した。
論文 参考訳(メタデータ) (2023-11-23T16:14:44Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - BIRP: Bitcoin Information Retrieval Prediction Model Based on Multimodal
Pattern Matching [2.2945578854972446]
CC情報から類似したPCの動きをランク付けする手法を提案する。
追加機能としてこれを活用することで,モデルの方向性予測能力が向上することを示す。
非常に不安定な価格のため、私たちのランク付けと方向性予測の方法論をBitcoinに適用する。
論文 参考訳(メタデータ) (2023-08-14T07:04:23Z) - Forecasting Bitcoin volatility spikes from whale transactions and
CryptoQuant data using Synthesizer Transformer models [5.88864611435337]
ボラティリティ予測のためのディープラーニング合成器変換器モデルを提案する。
以上の結果から,既存の最先端モデルよりも優れたモデルであることが示唆された。
提案手法はビットコイン市場における極端なボラティリティ(変動性)の動きを予測するための有用なツールであることを示す。
論文 参考訳(メタデータ) (2022-10-06T05:44:29Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated
Causal Convolutions [78.6363825307044]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
拡張畳み込みフィルタは日内財務データから関連情報を抽出するのに最適であることを示す。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
金融の価格問題に様々な量子技術を適用することができることを示す。
従来の研究と異なる3つの方法について議論する。
論文 参考訳(メタデータ) (2022-09-19T09:22:01Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。