論文の概要: Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models
- arxiv url: http://arxiv.org/abs/2011.08011v2
- Date: Sat, 2 Jan 2021 08:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 22:51:01.921416
- Title: Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models
- Title(参考訳): CNNとLSTMに基づくディープラーニングモデルを用いた株価時系列のロバスト分析
- Authors: Sidra Mehtab, Jaydip Sen and Subhasis Dasgupta
- Abstract要約: 本稿では,株価予測において非常に高い精度が得られるディープラーニングに基づく回帰モデルについて述べる。
我々は4つの畳み込みニューラルネットワーク(CNN)と5つの長期記憶と短期記憶に基づくディープラーニングモデルを構築し、将来の株価を正確に予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of stock price and stock price movement patterns has always been a
critical area of research. While the well-known efficient market hypothesis
rules out any possibility of accurate prediction of stock prices, there are
formal propositions in the literature demonstrating accurate modeling of the
predictive systems that can enable us to predict stock prices with a very high
level of accuracy. In this paper, we present a suite of deep learning-based
regression models that yields a very high level of accuracy in stock price
prediction. To build our predictive models, we use the historical stock price
data of a well-known company listed in the National Stock Exchange (NSE) of
India during the period December 31, 2012 to January 9, 2015. The stock prices
are recorded at five minutes intervals of time during each working day in a
week. Using these extremely granular stock price data, we build four
convolutional neural network (CNN) and five long- and short-term memory
(LSTM)-based deep learning models for accurate forecasting of the future stock
prices. We provide detailed results on the forecasting accuracies of all our
proposed models based on their execution time and their root mean square error
(RMSE) values.
- Abstract(参考訳): 株価と株価の動きの予測は、常に重要な研究領域である。
良く知られた効率的市場仮説は、株価を正確に予測する可能性を否定する一方で、非常に高い精度で株価を予測できる予測システムの正確なモデリングを示す文献に正式な提案がある。
本稿では,株価予測において非常に高い精度が得られるディープラーニングに基づく回帰モデルについて述べる。
予測モデルの構築には、2012年12月31日から2015年1月9日までの期間に、インドの国立証券取引所(nse)に上場した有名な企業の株価データを使用します。
株価は1週間の勤務日ごとに5分間隔で記録される。
これらの極めてきめ細かい株価データを用いて、将来の株価を正確に予測するために、4つの畳み込みニューラルネットワーク(CNN)と5つの長期記憶に基づくディープラーニングモデルを構築します。
提案手法は,実行時間と根平均二乗誤差(RMSE)値に基づいて,提案したモデル全体の予測精度について詳細な結果を提供する。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
株価と株価の動きの堅牢かつ正確な予測のための予測モデルを構築することは、解決すべき課題である。
本章では、インド国立証券取引所(NSE)の多角化部門に上場する株式の将来価格の堅牢かつ正確な予測のために、ディープラーニングアーキテクチャ上に構築された予測回帰モデル集を提案する。
論文 参考訳(メタデータ) (2021-06-17T17:15:02Z) - Accurate Stock Price Forecasting Using Robust and Optimized Deep
Learning Models [0.0]
本稿では,インドの自動車部門における重要な企業の株価の将来価格を正確に予測するために,回帰モデルの10種類の深層学習モデルを提案する。
5分間隔で集められた非常に粒状の株価を使用して、私達は2012年12月31日から2013年12月27日までの記録に基づいてモデルを訓練します。
本稿では,モデルの設計原理を説明し,予測精度と実行速度に基づいてその性能を解析する。
論文 参考訳(メタデータ) (2021-03-28T09:52:29Z) - Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models [0.0]
本稿では,株価予測のための深層学習モデルについて述べる。
インド国立証券取引所に記載されているNIFTY50指数の歴史的記録を利用する。
我々の提案には、畳み込みニューラルネットワーク上に構築された2つの回帰モデルと、3つの長期記憶ネットワークに基づく予測モデルが含まれる。
論文 参考訳(メタデータ) (2020-10-22T03:09:07Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - Stock Price Prediction Using Machine Learning and LSTM-Based Deep
Learning Models [1.335161061703997]
本稿では,異なる機械学習モデルとディープラーニングモデルを構築するための,株価予測のためのハイブリッドモデリング手法を提案する。
2014年12月29日から2020年7月31日まで、インドの国立証券取引所(NSE)のNIFTY50指数を用いた。
我々は,LSTM回帰モデルを用いて,アーキテクチャや入力データの構造に異なる4つの異なるモデルを用いて,将来のNIFTY 50オープン値を予測する。
論文 参考訳(メタデータ) (2020-09-20T20:32:33Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-17T19:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。