EBBINNOT: A Hardware Efficient Hybrid Event-Frame Tracker for Stationary
Dynamic Vision Sensors
- URL: http://arxiv.org/abs/2006.00422v4
- Date: Tue, 10 May 2022 02:58:45 GMT
- Title: EBBINNOT: A Hardware Efficient Hybrid Event-Frame Tracker for Stationary
Dynamic Vision Sensors
- Authors: Vivek Mohan, Deepak Singla, Tarun Pulluri, Andres Ussa, Pradeep Kumar
Gopalakrishnan, Pao-Sheng Sun, Bharath Ramesh and Arindam Basu
- Abstract summary: This paper presents a hybrid event-frame approach for detecting and tracking objects recorded by a stationary neuromorphic sensor.
To exploit the background removal property of a static DVS, we propose an event-based binary image creation that signals presence or absence of events in a frame duration.
This is the first time a stationary DVS based traffic monitoring solution is extensively compared to simultaneously recorded RGB frame-based methods.
- Score: 5.674895233111088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an alternative sensing paradigm, dynamic vision sensors (DVS) have been
recently explored to tackle scenarios where conventional sensors result in high
data rate and processing time. This paper presents a hybrid event-frame
approach for detecting and tracking objects recorded by a stationary
neuromorphic sensor, thereby exploiting the sparse DVS output in a low-power
setting for traffic monitoring. Specifically, we propose a hardware efficient
processing pipeline that optimizes memory and computational needs that enable
long-term battery powered usage for IoT applications. To exploit the background
removal property of a static DVS, we propose an event-based binary image
creation that signals presence or absence of events in a frame duration. This
reduces memory requirement and enables usage of simple algorithms like median
filtering and connected component labeling for denoise and region proposal
respectively. To overcome the fragmentation issue, a YOLO inspired neural
network based detector and classifier to merge fragmented region proposals has
been proposed. Finally, a new overlap based tracker was implemented, exploiting
overlap between detections and tracks is proposed with heuristics to overcome
occlusion. The proposed pipeline is evaluated with more than 5 hours of traffic
recording spanning three different locations on two different neuromorphic
sensors (DVS and CeleX) and demonstrate similar performance. Compared to
existing event-based feature trackers, our method provides similar accuracy
while needing approx 6 times less computes. To the best of our knowledge, this
is the first time a stationary DVS based traffic monitoring solution is
extensively compared to simultaneously recorded RGB frame-based methods while
showing tremendous promise by outperforming state-of-the-art deep learning
solutions.
Related papers
- Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Low-power event-based face detection with asynchronous neuromorphic
hardware [2.0774873363739985]
We present the first instance of an on-chip spiking neural network for event-based face detection deployed on the SynSense Speck neuromorphic chip.
We show how to reduce precision discrepancies between off-chip clock-driven simulation used for training and on-chip event-driven inference.
We achieve an on-chip face detection mAP[0.5] of 0.6 while consuming only 20 mW.
arXiv Detail & Related papers (2023-12-21T19:23:02Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
We present Minkowski Tracker, a sparse-temporal R-CNN that jointly solves object detection and tracking problems.
Inspired by region-based CNN (R-CNN), we propose to track motion as a second stage of the object detector R-CNN.
We show in large-scale experiments that the overall performance gain of our method is due to four factors.
arXiv Detail & Related papers (2022-08-22T04:47:40Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - Faster object tracking pipeline for real time tracking [0.0]
Multi-object tracking (MOT) is a challenging practical problem for vision based applications.
This paper showcases a generic pipeline which can be used to speed up detection based object tracking methods.
arXiv Detail & Related papers (2020-11-08T06:33:48Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - A Hybrid Neuromorphic Object Tracking and Classification Framework for
Real-time Systems [5.959466944163293]
This paper proposes a real-time, hybrid neuromorphic framework for object tracking and classification using event-based cameras.
Unlike traditional approaches of using event-by-event processing, this work uses a mixed frame and event approach to get energy savings with high performance.
arXiv Detail & Related papers (2020-07-21T07:11:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.