論文の概要: Privacy Shadow: Measuring Node Predictability and Privacy Over Time
- arxiv url: http://arxiv.org/abs/2004.02047v1
- Date: Sat, 4 Apr 2020 23:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 23:29:48.153399
- Title: Privacy Shadow: Measuring Node Predictability and Privacy Over Time
- Title(参考訳): プライバシーのシャドウ:時間とともにノードの予測可能性とプライバシーを測定する
- Authors: Ivan Brugere, Tanya y. Berger-Wolf
- Abstract要約: ネットワーク内の任意の時間からユーザがいつまで予測されるかを測定するために,プライバシシャドウを提案する。
実世界の3つのデータセットにおいて、個々のユーザに対して、プライバシシャドーの長さを予測できることを実証する。
- 参考スコア(独自算出の注目度): 1.2437226707039446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The structure of network data enables simple predictive models to leverage
local correlations between nodes to high accuracy on tasks such as attribute
and link prediction. While this is useful for building better user models, it
introduces the privacy concern that a user's data may be re-inferred from the
network structure, after they leave the application. We propose the privacy
shadow for measuring how long a user remains predictive from an arbitrary time
within the network. Furthermore, we demonstrate that the length of the privacy
shadow can be predicted for individual users in three real-world datasets.
- Abstract(参考訳): ネットワークデータの構造により、単純な予測モデルでは、ノード間の局所的相関を利用して属性やリンク予測といったタスクの精度を高めることができる。
これはより良いユーザーモデルを構築するのに役立ちますが、アプリケーションを離れた後、ユーザのデータがネットワーク構造から再推論される可能性があるというプライバシーの懸念をもたらします。
ネットワーク内の任意の時間からユーザがいつまで予測されるかを測定するために,プライバシシャドウを提案する。
さらに,3つの実世界のデータセットにおいて,個々のユーザに対してプライバシシャドーの長さを予測できることを実証する。
関連論文リスト
- Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
本研究では,ネットワーク構造から生じるプライバシーリスクに対する理解と保護を推し進める。
我々は,ネットワーク構造によるプライバシー漏洩の可能性を評価するための重要なツールとして機能する,新しいグラフプライベート属性推論攻撃を開発した。
攻撃モデルはユーザのプライバシに重大な脅威を与え,グラフデータ公開手法は最適なプライバシとユーティリティのトレードオフを実現する。
論文 参考訳(メタデータ) (2024-07-26T07:40:54Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - Privacy-Preserving Graph Embedding based on Local Differential Privacy [26.164722283887333]
ノードデータのプライバシを保護するために,PrivGEという新たなプライバシ保護グラフ埋め込みフレームワークを導入する。
具体的には,ノードデータを難読化するための LDP 機構を提案し,パーソナライズされた PageRank を近接指標としてノード表現を学習する。
いくつかの実世界のグラフデータセットの実験は、PrivGEがプライバシとユーティリティの最適なバランスを達成していることを示している。
論文 参考訳(メタデータ) (2023-10-17T08:06:08Z) - A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and
Applications [76.88662943995641]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱う能力のため、大きな注目を集めている。
この問題に対処するため、研究者らはプライバシー保護のGNNの開発を開始した。
この進歩にもかかわらず、攻撃の包括的概要と、グラフドメインのプライバシを保存するためのテクニックが欠如している。
論文 参考訳(メタデータ) (2023-08-31T00:31:08Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Privacy-Utility Trades in Crowdsourced Signal Map Obfuscation [20.58763760239068]
クラウドソースセルラー信号強度測定は、ネットワーク性能を改善するために信号マップを生成するために使用できる。
我々は、データがモバイルデバイスを離れる前に、そのようなデータを難読化することを検討する。
評価結果は,多種多様な実世界の信号マップデータセットに基づいて,適切なプライバシとユーティリティを同時に実現可能であることを示す。
論文 参考訳(メタデータ) (2022-01-13T03:46:22Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z) - Privacy-Aware Time-Series Data Sharing with Deep Reinforcement Learning [33.42328078385098]
時系列データ共有におけるプライバシーユーティリティトレードオフ(PUT)について検討する。
現時点でのプライバシを保存する方法は、トレースレベルでかなりの量の情報をリークする可能性がある。
我々は、ユーザの真のデータシーケンスの歪んだバージョンを、信頼できない第三者と共有することを検討する。
論文 参考訳(メタデータ) (2020-03-04T18:47:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。