論文の概要: An Architecture for Privacy-Preserving Telemetry Scheme
- arxiv url: http://arxiv.org/abs/2507.06350v1
- Date: Tue, 08 Jul 2025 19:20:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.36864
- Title: An Architecture for Privacy-Preserving Telemetry Scheme
- Title(参考訳): プライバシー保護型テレメトリ方式のアーキテクチャ
- Authors: Kenneth Odoh,
- Abstract要約: プライバシー保護型テレメトリアグリゲーション方式を提案する。
設計哲学はクライアントサーバアーキテクチャに従う。
本稿では、既知の辞書のヒストグラムを用いた周波数推定に焦点を当てた実装を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a privacy-preserving telemetry aggregation scheme. Our underlying frequency estimation routine works within the framework of differential privacy. The design philosophy follows a client-server architecture. Furthermore, the system uses a local differential privacy scheme where data gets randomized on the client before submitting the request to the resource server. This scheme allows for data analysis on de-identified data by carefully adding noise to prevent re-identification attacks, thereby facilitating public data release without compromising the identifiability of the individual record. This work further enhances privacy guarantees by leveraging Oblivious HTTP (OHTTP) to achieve increased privacy protection for data in transit that addresses pre-existing privacy vulnerabilities in raw HTTP. We provide an implementation that focuses on frequency estimation with a histogram of a known dictionary. Our resulting formulation based on OHTTP has provided stricter privacy safeguards when compared to trusting an organization to manually delete identifying information from the client's request in the ingestor as deployed in reference work~\cite{apple2017}. Code available at https://github.com/kenluck2001/miscellaneous/tree/master/src/Privacy-Preserving-Telemetry.
- Abstract(参考訳): プライバシー保護型テレメトリアグリゲーション方式を提案する。
我々の根底にある周波数推定ルーチンは、差分プライバシーの枠組みの中で機能する。
設計哲学はクライアントサーバアーキテクチャに従う。
さらに、リソースサーバにリクエストを送信する前に、クライアント上でデータがランダム化されるような、ローカルな差分プライバシースキームを使用する。
この方式は、ノイズを慎重に付加して、再識別攻撃を防止し、個々のレコードの識別性を損なうことなく、公開データ公開を容易にする。
この作業は、Oblivious HTTP(OHTTP)を活用して、既存のHTTPのプライバシ脆弱性に対処するトランジットにおけるデータのプライバシ保護を向上することで、プライバシ保証をさらに強化する。
本稿では、既知の辞書のヒストグラムを用いた周波数推定に焦点を当てた実装を提案する。
OHTTPをベースとした当社のフォーミュレーションは、参照作業~\cite{apple2017}にデプロイされたインジェクタ内のクライアント要求から識別情報を手作業で削除する組織に対して、より厳格なプライバシ保護を提供しています。
コードはhttps://github.com/kenluck2001/miscellaneous/tree/master/src/Privacy-Preserving-Telemetryで公開されている。
関連論文リスト
- PrivacyRestore: Privacy-Preserving Inference in Large Language Models via Privacy Removal and Restoration [20.05248442344211]
PrivacyRestoreは、推論中のユーザの入力のプライバシを保護するためのプラグイン・アンド・プレイ方式である。
プライバシストアの有効性を評価するために、医療ドメインと法律ドメインをカバーする3つのデータセットを作成します。
論文 参考訳(メタデータ) (2024-06-03T14:57:39Z) - RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs [2.1765174838950494]
センサデバイスが生み出すデータを収集・保護する新たなパラダイムについて検討する。
データアグリゲーションとプライバシ保護の共同設計に関するこれまでの研究は、信頼されたフュージョンセンターがプライバシ体制に準拠していることを前提としている。
本稿では,3段階の逐次手順,雑音付加,ランダムな置換,パラメータ推定に一般化可能な新しいパラダイム(RASE)を提案する。
論文 参考訳(メタデータ) (2024-05-31T15:21:38Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - A Shuffling Framework for Local Differential Privacy [40.92785300658643]
ldpデプロイメントは、敵がノイズ応答をアイデンティティにリンクできるため、推論攻撃に対して脆弱である。
別のモデルであるシャッフルDPは、ノイズ応答をランダムにシャッフルすることでこれを防止している。
雑音応答の体系的なシャッフルは、意味のあるデータ学習性を維持しつつ、特定の推論攻撃を抑えることができることを示す。
論文 参考訳(メタデータ) (2021-06-11T20:36:23Z) - Location Trace Privacy Under Conditional Priors [22.970796265042246]
条件依存型データのプライバシー損失を予測する上で,R'enyi分散に基づくプライバシフレームワークを提案する。
このプライバシーを条件付きで達成するためのアルゴリズムを実証します。
論文 参考訳(メタデータ) (2021-02-23T21:55:34Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。