論文の概要: Trust-based Multiagent Consensus or Weightings Aggregation
- arxiv url: http://arxiv.org/abs/2004.02490v1
- Date: Mon, 6 Apr 2020 08:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 07:22:45.681239
- Title: Trust-based Multiagent Consensus or Weightings Aggregation
- Title(参考訳): 信頼に基づくマルチエージェントコンセンサスまたは重み付け集約
- Authors: Bruno Yun and Madalina Croitoru
- Abstract要約: 信頼ネットワークを介して通信する複数のエージェント間のコンセンサスに到達するための枠組みを,環境に関する矛盾する情報に基づいて導入する。
我々は、我々のアプローチを形式化し、その性質を経験的かつ理論的に分析する。
- 参考スコア(独自算出の注目度): 9.13755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for reaching a consensus amongst several agents
communicating via a trust network on conflicting information about their
environment. We formalise our approach and provide an empirical and theoretical
analysis of its properties.
- Abstract(参考訳): 信頼ネットワークを介して通信する複数のエージェント間のコンセンサスに到達するための枠組みを,環境に関する矛盾する情報に基づいて導入する。
我々は,そのアプローチを形式化し,その特性について経験的かつ理論的に分析する。
関連論文リスト
- Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy [11.246557832016238]
安全クリティカルで競争の激しい環境では、敵は多数のエージェントに侵入し、妥協することがある。
我々は、この妥協されたエージェント脅威モデルの下で、アートマルチターゲット追跡アルゴリズムの状態を解析する。
階層的ベイズ更新を用いた信頼度推定フレームワークを設計する。
論文 参考訳(メタデータ) (2024-03-25T17:17:35Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs [61.07130026622437]
大規模言語モデル(LLM)は、まだ自然言語推論タスクに苦戦している。
心の社会に動機づけられて、我々はReConcileを提案する。
LLMエージェント間のラウンドテーブル会議として設計されたマルチモデルマルチエージェントフレームワーク。
論文 参考訳(メタデータ) (2023-09-22T17:12:45Z) - Networked Communication for Decentralised Agents in Mean-Field Games [59.01527054553122]
平均フィールドゲームフレームワークにネットワーク通信を導入する。
当社のアーキテクチャは、中央集権型と独立した学習ケースの双方で保証されていることを証明しています。
論文 参考訳(メタデータ) (2023-06-05T10:45:39Z) - Trust-based Consensus in Multi-Agent Reinforcement Learning Systems [5.778852464898369]
マルチエージェント強化学習(MARL)における信頼できないエージェントの問題について検討する。
本稿では、分散的信頼機構である強化学習に基づく信頼合意(RLTC)を提案する。
高いコンセンサスの成功率によって証明されるように、信頼できないエージェントを効果的に扱えることを実証的に実証する。
論文 参考訳(メタデータ) (2022-05-25T15:58:34Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
信頼型マルチビュー分類(TMC)と呼ばれる新しいマルチビュー分類アルゴリズムを提案する。
TMCは、様々な視点をエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
理論的および実験的結果は、精度、堅牢性、信頼性において提案されたモデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-04-25T03:48:49Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - A Robust Model for Trust Evaluation during Interactions between Agents
in a Sociable Environment [9.520158869896395]
信頼評価は、研究と応用の両方において重要なトピックである。
本稿では,エージェント間の信頼評価のモデルとして,直接信頼,隣接リンク経由の間接信頼,環境におけるエージェントの評判の組み合わせについて述べる。
論文 参考訳(メタデータ) (2021-04-17T14:38:02Z) - On the Importance of Trust in Next-Generation Networked CPS Systems: An
AI Perspective [2.1055643409860734]
本稿では,ネットワークエージェントの状態を評価し,意思決定プロセスを改善する手段として信頼を提案する。
信頼関係は、プロトコル内のエンティティの相互作用によって生成された証拠に基づいている。
信頼の証拠を活用することで,フェデレートラーニングのパフォーマンスと安全性が向上することを示す。
論文 参考訳(メタデータ) (2021-04-16T02:12:13Z) - Where Does Trust Break Down? A Quantitative Trust Analysis of Deep
Neural Networks via Trust Matrix and Conditional Trust Densities [94.65749466106664]
本稿では,新しい信頼量化戦略である信頼行列の概念を紹介する。
信頼行列は、所定のアクター・オークル回答シナリオに対して期待される質問・回答信頼を定義する。
我々は、条件付き信頼密度の概念により、信頼密度の概念をさらに拡張する。
論文 参考訳(メタデータ) (2020-09-30T14:33:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。