論文の概要: Networked Communication for Decentralised Agents in Mean-Field Games
- arxiv url: http://arxiv.org/abs/2306.02766v4
- Date: Thu, 10 Oct 2024 09:09:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:28:49.704851
- Title: Networked Communication for Decentralised Agents in Mean-Field Games
- Title(参考訳): 平均フィールドゲームにおける分散エージェントのためのネットワーク通信
- Authors: Patrick Benjamin, Alessandro Abate,
- Abstract要約: 平均フィールドゲームフレームワークにネットワーク通信を導入する。
当社のアーキテクチャは、中央集権型と独立した学習ケースの双方で保証されていることを証明しています。
- 参考スコア(独自算出の注目度): 59.01527054553122
- License:
- Abstract: We introduce networked communication to the mean-field game framework, in particular to oracle-free settings where $N$ decentralised agents learn along a single, non-episodic run of the empirical system. We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases. We provide the order of the difference in these bounds in terms of network structure and number of communication rounds, and also contribute a policy-update stability guarantee. We discuss how the sample guarantees of the three theoretical algorithms do not actually result in practical convergence. We therefore show that in practical settings where the theoretical parameters are not observed (leading to poor estimation of the Q-function), our communication scheme significantly accelerates convergence over the independent case (and sometimes even the centralised case), without relying on the assumption of a centralised learner. We contribute further practical enhancements to all three theoretical algorithms, allowing us to present their first empirical demonstrations. Our experiments confirm that we can remove several of the theoretical assumptions of the algorithms, and display the empirical convergence benefits brought by our new networked communication. We additionally show that the networked approach has significant advantages, over both the centralised and independent alternatives, in terms of robustness to unexpected learning failures and to changes in population size.
- Abstract(参考訳): 平均フィールドゲームフレームワークにネットワーク通信を導入し、特に、N$の分散エージェントが経験的システムの単一かつ非エポゾリックな実行について学習するオラクルフリーな設定について紹介する。
当社のアーキテクチャは、中央集権型と独立した学習ケースの双方で保証されていることを証明しています。
ネットワーク構造と通信ラウンド数の観点から,これらの境界の差分を順序付けするとともに,政策更新による安定性保証にも貢献する。
3つの理論的アルゴリズムのサンプル保証が実際どのように実践的な収束をもたらすかについて議論する。
したがって、理論パラメータが観測されない現実的な環境では、集中学習者の仮定に頼らずに、我々の通信方式は独立したケース(時には中央集権的ケース)に対する収束を著しく加速させる。
3つの理論アルゴリズムにさらに実践的な拡張を加え、最初の実証実験を提示する。
実験により,アルゴリズムの理論的仮定のいくつかを取り除き,新たなネットワーク通信による経験的収束効果を示すことができることを確認した。
さらに、ネットワーク化アプローチは、予期せぬ学習障害に対する堅牢性や人口規模の変化という点において、中央集権型および独立型の選択肢よりも大きな優位性があることも示している。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Distributed Event-Based Learning via ADMM [11.461617927469316]
エージェントがネットワーク上で情報を交換することで,グローバルな目的関数を最小限に抑える分散学習問題を考える。
提案手法には2つの特徴がある: (i) 必要なときにのみ通信をトリガーすることで通信を大幅に削減し, (ii) 異なるエージェント間のデータ分散に非依存である。
論文 参考訳(メタデータ) (2024-05-17T08:30:28Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Revisiting Deep Semi-supervised Learning: An Empirical Distribution
Alignment Framework and Its Generalization Bound [97.93945601881407]
経験分布アライメントによる半教師あり学習(SLEDA)と呼ばれる深層半教師あり学習フレームワークを提案する。
ラベル付きデータに対するトレーニング誤差を最小化することにより,半教師付き学習の一般化誤差を効果的にバウンドできることを示す。
新しい枠組みと理論的境界に基づいて、Augmented Distribution Alignment Network(ADA-Net)と呼ばれるシンプルで効果的な深層半教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2022-03-13T11:59:52Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
本稿では,非線形ゴシップ(NGO)に基づく分散学習フレームワークを提案する。
コミュニケーション遅延とランダム化チャットが学習にどう影響するかを解析することで,実践的なバリエーションの導出が可能となる。
論文 参考訳(メタデータ) (2021-11-04T15:36:25Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
我々は、不均一(非IID)で多くのデバイスに分散する問題データを持つ領域上での分散変分不等式(VIs)を考察する。
我々は、完全に分散化された計算の設定を網羅する計算ネットワークについて、非常に一般的な仮定を行う。
理論的には, モノトン, モノトンおよび非モノトンセッティングにおける収束速度を理論的に解析する。
論文 参考訳(メタデータ) (2021-06-15T17:45:51Z) - Decentralized Deep Learning using Momentum-Accelerated Consensus [15.333413663982874]
複数のエージェントが協調して分散データセットから学習する分散ディープラーニングの問題を考える。
本稿では,エージェントが固定された通信トポロジ上で対話する分散ディープラーニングアルゴリズムを提案し,解析する。
本アルゴリズムは,勾配に基づくプロトコルで用いられるヘビーボール加速度法に基づく。
論文 参考訳(メタデータ) (2020-10-21T17:39:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。