Continuously parametrized quantum simulation of molecular electron
transfer reactions
- URL: http://arxiv.org/abs/2004.02925v2
- Date: Wed, 3 Feb 2021 18:19:11 GMT
- Title: Continuously parametrized quantum simulation of molecular electron
transfer reactions
- Authors: Frank Schlawin, Manuel Gessner, Andreas Buchleitner, Tobias Schaetz
and Spiros S Skourtis
- Abstract summary: We show that trapped-ion experiments allow to reproduce and connect vastly different regimes of molecular charge transfer.
Such a setting allows not only to reproduce widely-used transport models, such as Marcus theory, but also to control and measure the relevant observables.
Our numerical simulations predict an unconventional quantum transfer regime, featuring a transition from quantum adiabatic- to resonance-assisted transfer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A comprehensive description of molecular electron transfer reactions is
essential for our understanding of fundamental phenomena in bio-energetics and
molecular electronics. Experimental studies of molecular systems in
condensed-phase environments, however, face difficulties to independently
control the parameters that govern the transfer mechanism with high precision.
We show that trapped-ion experiments instead allow to reproduce and
continuously connect vastly different regimes of molecular charge transfer
through precise tuning of, e.g., phonon temperature, electron-phonon
interactions, and electronic couplings. Such a setting allows not only to
reproduce widely-used transport models, such as Marcus theory. It also provides
access to transfer regimes that are unattainable for molecular experiments,
while controlling and measuring the relevant observables on the level of
individual quanta. Our numerical simulations predict an unconventional quantum
transfer regime, featuring a transition from quantum adiabatic- to
resonance-assisted transfer as a function of the donor-acceptor energy gap,
that can be reached by increasing the electronic coupling at low temperatures.
Trapped ion-based quantum simulations thus promise to enhance our microscopic
understanding of molecular electron transfer processes, and may help to reveal
efficient design principles for synthetic devices.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Trapped-Ion Quantum Simulation of Electron Transfer Models with Tunable Dissipation [1.159879739037684]
We experimentally simulate a paradigmatic model of molecular electron transfer using a multi-species trapped-ion crystal.
We observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics.
arXiv Detail & Related papers (2024-05-16T18:03:17Z) - Quantum Simulation of Polarized Light-induced Electron Transfer with A
Trapped-ion Qutrit System [5.300292868296255]
This study describes a quantum simulation method that explores the influence of light polarization on the electron transfer between two molecules.
By implementing precise and coherent control among the quantum states of trapped atomic ions, we can induce quantum dynamics that mimic the electron transfer dynamics in molecules.
arXiv Detail & Related papers (2023-04-24T16:38:54Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
We develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules.
We demonstrate our method on IBM superconducting quantum processors.
We conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime.
arXiv Detail & Related papers (2021-10-03T09:56:47Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Simulating Energy Transfer in Molecular Systems with Digital Quantum
Computers [8.271013526496906]
Quantum computers have the potential to simulate chemical systems beyond the capability of classical computers.
We extend near-term quantum simulations of chemistry to time-dependent processes by simulating energy transfer in organic semiconducting molecules.
Our approach opens up new opportunities for modeling quantum dynamics in chemical, biological and material systems with quantum computers.
arXiv Detail & Related papers (2021-01-18T05:08:05Z) - Quantum Algorithm for Simulating Single-Molecule Electron Transport [0.0]
We introduce a quantum algorithm to efficiently calculate the electronic current through single-molecule junctions.
We show that a quantum computer programmed to simulate vibronic transitions between different charge states of a molecule can be used to compute sequential electron transfer rates and electric current.
arXiv Detail & Related papers (2020-12-16T19:53:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.