Methods for Accelerating Geospatial Data Processing Using Quantum
Computers
- URL: http://arxiv.org/abs/2004.03079v1
- Date: Tue, 7 Apr 2020 02:14:51 GMT
- Title: Methods for Accelerating Geospatial Data Processing Using Quantum
Computers
- Authors: Maxwell Henderson, Jarred Gallina, Michael Brett
- Abstract summary: This paper describes an approach to satellite image classification using a universal quantum enhancement to convolutional neural networks.
We find a performance improvement over previous quantum efforts in this domain and identify potential refinements that could lead to an eventual quantum advantage.
We benchmark these networks using the SAT-4 satellite imagery data set in order to demonstrate the utility of machine learning techniques in the space industry.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is a transformative technology with the potential to
enhance operations in the space industry through the acceleration of
optimization and machine learning processes. Machine learning processes enable
automated image classification in geospatial data. New quantum algorithms
provide novel approaches for solving these problems and a potential future
advantage over current, classical techniques. Universal Quantum Computers,
currently under development by Rigetti Computing and other providers, enable
fully general quantum algorithms to be executed, with theoretically proven
speed-up over classical algorithms in certain cases. This paper describes an
approach to satellite image classification using a universal quantum
enhancement to convolutional neural networks: the quanvolutional neural
network. Using a refined method, we found a performance improvement over
previous quantum efforts in this domain and identified potential refinements
that could lead to an eventual quantum advantage. We benchmark these networks
using the SAT-4 satellite imagery data set in order to demonstrate the utility
of machine learning techniques in the space industry and the potential
advantages that quantum machine learning can offer.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
Machine learning and quantum computing are causing a paradigm shift in the performance and behavior of certain algorithms.
This paper first understands the mathematical intuition for the implementation of quantum feature space.
We build a noisy variational quantum circuit KNN which mimics the classification methods of a traditional KNN.
arXiv Detail & Related papers (2020-02-22T04:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.