Parametrized Complexity of Quantum Inspired Algorithms
- URL: http://arxiv.org/abs/2112.11686v1
- Date: Wed, 22 Dec 2021 06:19:36 GMT
- Title: Parametrized Complexity of Quantum Inspired Algorithms
- Authors: Ebrahim Ardeshir-Larijani
- Abstract summary: Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by recent progress in quantum technologies and in particular
quantum software, research and industrial communities have been trying to
discover new applications of quantum algorithms such as quantum optimization
and machine learning. Regardless of which hardware platform these novel
algorithms operate on, whether it is adiabatic or gate based, from theoretical
point of view, they are performing drastically better than their classical
counterparts. Two promising areas of quantum algorithms quantum machine
learning and quantum optimization. These are based on performing matrix
operations using quantum states and operation, in order to speed up data
analysis where quantum computing can efficiently work with high dimensional
vectors. Motivated by that, quantum inspired algorithms (e.g. for
recommendation systems and principal component analysis) are developed to cope
with high dimensionality using probabilistic techniques that are inspire from
quantum computing. In this paper we review recent progress in the area of
quantum inspired algorithms for low rank matrix approximation. We further
explore the possibility of using parametrized complexity for such algorithms to
refine practical complexity analysis. Finally, we conjecture that quantum
inspired algorithms that use low rank approximation and also sample and query
technique for input representations are Fixed Parameter Tractable (FPT).
Related papers
- Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
This tutorial provides a mathematical description of the class of Variational Quantum Algorithms.
We introduce precisely the key aspects of these hybrid algorithms on the quantum side and the classical side.
We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions.
arXiv Detail & Related papers (2022-12-22T14:27:52Z) - Quantum Algorithms for Unsupervised Machine Learning and Neural Networks [2.28438857884398]
We introduce quantum algorithms to solve tasks such as matrix product or distance estimation.
These results are then used to develop new quantum algorithms for unsupervised machine learning.
We will also present new quantum algorithms for neural networks, or deep learning.
arXiv Detail & Related papers (2021-11-05T16:36:09Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.