論文の概要: Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions
- arxiv url: http://arxiv.org/abs/2005.08820v1
- Date: Mon, 18 May 2020 15:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:08:31.958802
- Title: Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions
- Title(参考訳): コロナウイルスのパンデミックに対するソーシャルネットワーク情報の影響:Twitterによる研究と研究の方向性
- Authors: Azzam Mourad, Ali Srour, Haidar Harmanani, Cathia Jenainatiy, Mohamad
Arafeh
- Abstract要約: 2019年の推計295億人が世界中でソーシャルメディアを利用している。
コロナウイルスの流行は、ソーシャルメディアの津波を引き起こした。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
- 参考スコア(独自算出の注目度): 1.6571886312953874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: News creation and consumption has been changing since the advent of social
media. An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social
media. Most platforms were used to transmit relevant news, guidelines and
precautions to people. According to WHO, uncontrolled conspiracy theories and
propaganda are spreading faster than the COVID-19 pandemic itself, creating an
infodemic and thus causing psychological panic, misleading medical advises, and
economic disruption. Accordingly, discussions have been initiated with the
objective of moderating all COVID-19 communications, except those initiated
from trusted sources such as the WHO and authorized governmental entities. This
paper presents a large-scale study based on data mined from Twitter. Extensive
analysis has been performed on approximately one million COVID-19 related
tweets collected over a period of two months. Furthermore, the profiles of
288,000 users were analyzed including unique users profiles, meta-data and
tweets context. The study noted various interesting conclusions including the
critical impact of the (1) exploitation of the COVID-19 crisis to redirect
readers to irrelevant topics and (2) widespread of unauthentic medical
precautions and information. Further data analysis revealed the importance of
using social networks in a global pandemic crisis by relying on credible users
with variety of occupations, content developers and influencers in specific
fields. In this context, several insights and findings have been provided while
elaborating computing and non-computing implications and research directions
for potential solutions and social networks management strategies during crisis
periods.
- Abstract(参考訳): ソーシャルメディアの出現以来、ニュースの創造と消費は変化している。
2019年の推計295億人が世界中でソーシャルメディアを利用している。
新型コロナウイルスの感染拡大は、ソーシャルメディアの津波につながった。
ほとんどのプラットフォームは、関連するニュース、ガイドライン、予防措置を人々に伝えるために使われた。
WHOによると、未制御の陰謀論やプロパガンダは新型コロナウイルス(COVID-19)のパンデミックそのものよりも急速に広がり、インフォデミックを引き起こし、心理的パニック、誤った医療アドバイス、経済破壊を引き起こしている。
そのため、whoや公認政府機関などの信頼できる情報源から始まったものを除き、すべての新型コロナウイルスコミュニケーションをモデレートする目的で議論が始まっている。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
新型コロナウイルス関連のツイート約100万件について、2ヶ月にわたって大規模な分析が行われた。
さらに、ユニークなユーザープロフィール、メタデータ、ツイートコンテキストを含む288,000人のユーザーのプロフィールを分析した。
本研究は,(1)読者を無関係な話題にリダイレクトするための新型コロナウイルス危機の活用,(2)真偽の医療的予防や情報の普及など,さまざまな興味深い結論を導いた。
さらにデータ分析により、さまざまな職業を持つ信頼できるユーザ、コンテンツ開発者、特定の分野のインフルエンサーを頼りにすることで、世界的なパンデミック危機におけるソーシャルネットワークの利用の重要性が明らかになった。
この文脈では、危機期間中にコンピューティングと非計算的意味と潜在的なソリューションとソーシャルネットワーク管理戦略の研究の方向性を詳述しながら、いくつかの洞察と知見が提供されてきた。
関連論文リスト
- Measuring COVID-19 Related Media Consumption on Twitter [2.746705315038595]
ソーシャルメディアプラットフォームはパンデミックに関して重要なアップデートを提供している。
メディアとのオンラインコミュニケーションは、国際規模ではまだ探索されていない。
この論文は、各国における新型コロナウイルスのメディア消費に関する初めての研究である。
論文 参考訳(メタデータ) (2023-09-16T04:01:45Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
われわれは、中国のマイクロブログサイトWeiboで、新型コロナウイルス(COVID-19)に関する4ヶ月にわたる噂に関するオンラインディスカッションを包括的に分析した。
以上の結果から、不安(恐怖)型健康噂は、希望(希望)型よりもはるかに多くの議論を巻き起こし、長く続いたことが示唆された。
本稿では,噂の議論を抑えるためのデバンキングの有効性を示す。
論文 参考訳(メタデータ) (2021-09-25T14:02:29Z) - Sentiment Analysis of Covid-19 Tweets using Evolutionary
Classification-Based LSTM Model [0.6445605125467573]
本稿では,コロナウイルスやコビッドウイルスに関する大量のツイートの感情分析について述べる。
我々は、進化的分類とn-gram分析によるCovid-19流行に関連するトピックに対する世論感情の傾向を分析した。
我々は、Covid-19のデータに対する感情を予測するために、2種類の評価されたつぶやきを使用して、長期間のネットワークを訓練し、全体の精度は84.46%に達した。
論文 参考訳(メタデータ) (2021-06-13T04:27:21Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Global Sentiment Analysis Of COVID-19 Tweets Over Time [0.0]
TwitterのソーシャルネットワーキングサイトであるTwitterは、小説『コロナウイルス』に関するツイートがごく短期間で前例のない増加を見せた。
本稿では、コロナウイルスに関連するツイートのグローバルな感情分析と、異なる国の人々の感情が時間とともにどのように変化したかを示す。
論文 参考訳(メタデータ) (2020-10-27T12:10:10Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
我々は、2020年1月20日から2020年5月11日までの間に、TwitterとWeiboの投稿に基づいて、アメリカ人と中国人の感情的な軌跡を分析した。
中国と国連の2つの非常に異なる国とは対照的に、異なる文化におけるCOVID-19に対する人々の見解に顕著な違いが浮かび上がっている。
我々の研究は、公共の感情やパンデミックに対する懸念をリアルタイムで明らかにするための計算的アプローチを提供し、政策立案者が人々のニーズをよりよく理解し、それによって最適な政策を立案するのに役立つ可能性がある。
論文 参考訳(メタデータ) (2020-05-29T09:24:38Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
新型コロナウイルス感染症(COVID-19)のパンデミックは、政府に究極の課題を提示した。
米国では、新型コロナウイルス感染者が最も多い国で、全国的なソーシャルディスタンシングプロトコルが大統領によって実施されている。
本稿では,この対話型社会における前例のない破壊の社会的意義を,ソーシャルメディア上での人々の意見のマイニングによって発見することを目的とする。
論文 参考訳(メタデータ) (2020-04-21T13:02:38Z) - Large Arabic Twitter Dataset on COVID-19 [0.7734726150561088]
2019年12月下旬に中国で発生した新型コロナウイルス(COVID-19)は、今や世界中で急速に普及している。
全世界で確認された感染者は200万人を超え、死者は180,000人を超えている。
この研究は、2020年1月1日以来、私たちが収集してきた新型コロナウイルスに関する最初のアラビア語のつぶやきデータセットについて述べています。
論文 参考訳(メタデータ) (2020-04-09T01:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。