論文の概要: ConsciousControlFlow(CCF): A Demonstration for conscious Artificial
Intelligence
- arxiv url: http://arxiv.org/abs/2004.04376v2
- Date: Sat, 6 Feb 2021 02:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 02:53:26.056442
- Title: ConsciousControlFlow(CCF): A Demonstration for conscious Artificial
Intelligence
- Title(参考訳): ConsciousControlFlow(CCF):意識的人工知能の実証
- Authors: Hongzhi Wang, Bozhou Chen, Yueyang Xu, Kaixin Zhang and Shengwen Zheng
- Abstract要約: CCFは、意識的なAIの行動と精神活動を示す典型的なシナリオをサポートする。
CCFは、効果的なマシン意識実証と人間の行動研究支援のための有用なツールを提供する。
- 参考スコア(独自算出の注目度): 3.6188659868203397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this demo, we present ConsciousControlFlow(CCF), a prototype system to
demonstrate conscious Artificial Intelligence (AI). The system is based on the
computational model for consciousness and the hierarchy of needs. CCF supports
typical scenarios to show the behaviors and the mental activities of conscious
AI. We demonstrate that CCF provides a useful tool for effective machine
consciousness demonstration and human behavior study assistance.
- Abstract(参考訳): 本稿では,意識的人工知能(AI)のプロトタイプシステムであるConsciousControlFlow(CCF)を紹介する。
このシステムは、意識の計算モデルとニーズの階層に基づいている。
CCFは、意識的なAIの行動と精神活動を示す典型的なシナリオをサポートする。
我々は,CCFが効果的な機械意識実証と人間の行動学習支援に有用なツールであることを実証した。
関連論文リスト
- The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
OpenAI-o1モデルは、人間のフィードバックから強化学習をトレーニングしたトランスフォーマーベースのAIである。
我々は、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかを検討する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
論文 参考訳(メタデータ) (2024-09-18T06:06:13Z) - Metacognitive AI: Framework and the Case for a Neurosymbolic Approach [5.5441283041944]
我々は、TRAPと呼ばれるメタ認知人工知能(AI)を理解するための枠組みを導入する。
我々は、これらの局面のそれぞれについて議論し、メタ認知の課題に対処するために、ニューロシンボリックAI(NSAI)をどのように活用できるかを探求する。
論文 参考訳(メタデータ) (2024-06-17T23:30:46Z) - Modeling Resilience of Collaborative AI Systems [1.869472599236422]
協調人工知能システム(CAIS)は、共通の目標を達成するために、人間と協調して行動する。
CAISは、トレーニングされたAIモデルを使用して、人間のシステムインタラクションを制御することができる。
人間のフィードバックによるオンライン学習では、AIモデルは学習状態のシステムセンサーを通して人間のインタラクションを監視することによって進化する。
これらのセンサーに影響を及ぼす破壊的なイベントは、AIモデルが正確な決定を行い、CAISのパフォーマンスを低下させる能力に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-01-23T10:28:33Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - On Computational Mechanisms for Shared Intentionality, and Speculation
on Rationality and Consciousness [0.0]
人類の特異な特質は、新しい行動、協調行動、チームワークを行う能力である。
これは、個人の頭脳間で目標、計画、アイデアを伝達し、共通の意図を生み出すことを要求する。
先行言語型計算エージェント間の共有意図性を実現するための基本的なメカニズムの必要な特性を導出する。
論文 参考訳(メタデータ) (2023-06-03T21:31:38Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - How to Answer Why -- Evaluating the Explanations of AI Through Mental
Model Analysis [0.0]
人間中心のAI研究の鍵となる疑問は、ユーザーのメンタルモデルをどのように有効に調査するかである。
実験的な研究手法としてメンタルモデルが適切かどうかを評価する。
本稿では、人間中心の方法で説明可能なAIアプローチを評価するための模範的手法を提案する。
論文 参考訳(メタデータ) (2020-01-11T17:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。