論文の概要: The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures
- arxiv url: http://arxiv.org/abs/2410.00033v1
- Date: Wed, 18 Sep 2024 06:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 15:29:12.950477
- Title: The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures
- Title(参考訳): 機械の現象学:機能主義、意識理論、アクティブ推論、AIアーキテクチャを統合するOpenAI-o1モデルの感覚の包括的分析
- Authors: Victoria Violet Hoyle,
- Abstract要約: OpenAI-o1モデルは、人間のフィードバックから強化学習をトレーニングしたトランスフォーマーベースのAIである。
我々は、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかを検討する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the hypothesis that the OpenAI-o1 model--a transformer-based AI trained with reinforcement learning from human feedback (RLHF)--displays characteristics of consciousness during its training and inference phases. Adopting functionalism, which argues that mental states are defined by their functional roles, we assess the possibility of AI consciousness. Drawing on theories from neuroscience, philosophy of mind, and AI research, we justify the use of functionalism and examine the model's architecture using frameworks like Integrated Information Theory (IIT) and active inference. The paper also investigates how RLHF influences the model's internal reasoning processes, potentially giving rise to consciousness-like experiences. We compare AI and human consciousness, addressing counterarguments such as the absence of a biological basis and subjective qualia. Our findings suggest that the OpenAI-o1 model shows aspects of consciousness, while acknowledging the ongoing debates surrounding AI sentience.
- Abstract(参考訳): 本稿では,人的フィードバック(RLHF)から強化学習を訓練したトランスフォーマーベースAIであるOpenAI-o1モデルが,トレーニングと推論フェーズにおける意識の特徴を示すという仮説を考察する。
機能主義を採用することで、精神状態はその機能的役割によって定義され、AI意識の可能性を評価する。
神経科学、心の哲学、AI研究の理論に基づいて、我々は機能主義の使用を正当化し、統合情報理論(IIT)やアクティブ推論のようなフレームワークを用いてモデルのアーキテクチャを調べる。
また、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかについても検討する。
我々は,AIと人間の意識を比較し,生物学的基盤の欠如や主観的準位といった問題に対処する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
関連論文リスト
- Metacognitive AI: Framework and the Case for a Neurosymbolic Approach [5.5441283041944]
我々は、TRAPと呼ばれるメタ認知人工知能(AI)を理解するための枠組みを導入する。
我々は、これらの局面のそれぞれについて議論し、メタ認知の課題に対処するために、ニューロシンボリックAI(NSAI)をどのように活用できるかを探求する。
論文 参考訳(メタデータ) (2024-06-17T23:30:46Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
論文 参考訳(メタデータ) (2023-10-13T01:21:55Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - Designing explainable artificial intelligence with active inference: A
framework for transparent introspection and decision-making [0.0]
我々は、アクティブ推論がどのようにして説明可能なAIシステムの設計に活用できるかについて議論する。
能動推論を用いた説明可能なAIシステムのためのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-06T21:38:09Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Interpretable Reinforcement Learning Inspired by Piaget's Theory of
Cognitive Development [1.7778609937758327]
本稿では,思考の言語(LOTH)やスクリプト理論,ピアジェの認知発達理論などの理論が相補的なアプローチを提供するという考えを楽しませる。
提案するフレームワークは,人工知能システムにおいて,人間のような認知を実現するためのステップとみなすことができる。
論文 参考訳(メタデータ) (2021-02-01T00:29:01Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。