Minimizing Age-of-Information for Fog Computing-supported Vehicular
Networks with Deep Q-learning
- URL: http://arxiv.org/abs/2004.04640v1
- Date: Sat, 4 Apr 2020 05:19:25 GMT
- Title: Minimizing Age-of-Information for Fog Computing-supported Vehicular
Networks with Deep Q-learning
- Authors: Maohong Chen, Yong Xiao, Qiang Li and Kwang-cheng Chen
- Abstract summary: Age of Information (AoI) is a metric to evaluate the performance of wireless links between vehicles and cloud/fog servers.
This paper introduces a novel proactive and data-driven approach to optimize the driving route with a main objective of guaranteeing the confidence of AoI.
- Score: 15.493225546165627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connected vehicular network is one of the key enablers for next generation
cloud/fog-supported autonomous driving vehicles. Most connected vehicular
applications require frequent status updates and Age of Information (AoI) is a
more relevant metric to evaluate the performance of wireless links between
vehicles and cloud/fog servers. This paper introduces a novel proactive and
data-driven approach to optimize the driving route with a main objective of
guaranteeing the confidence of AoI. In particular, we report a study on three
month measurements of a multi-vehicle campus shuttle system connected to
cloud/fog servers via a commercial LTE network. We establish empirical models
for AoI in connected vehicles and investigate the impact of major factors on
the performance of AoI. We also propose a Deep Q-Learning Netwrok (DQN)-based
algorithm to decide the optimal driving route for each connected vehicle with
maximized confidence level. Numerical results show that the proposed approach
can lead to a significant improvement on the AoI confidence for various types
of services supported.
Related papers
- Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - QoS prediction in radio vehicular environments via prior user
information [54.853542701389074]
We evaluate ML tree-ensemble methods to predict in the range of minutes with data collected from a cellular test network.
Specifically, we use the correlations of the measurements coming from the radio environment by including information of prior vehicles to enhance the prediction of the target vehicles.
arXiv Detail & Related papers (2024-02-27T17:05:41Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
arXiv Detail & Related papers (2024-01-24T23:11:11Z) - DriveLM: Driving with Graph Visual Question Answering [57.51930417790141]
We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems.
We propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving.
arXiv Detail & Related papers (2023-12-21T18:59:12Z) - MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles [21.615151912285835]
We consider a base station coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner.
Due to the mobility of vehicles, the connections between the base station and ICVs are short-lived.
We propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations.
arXiv Detail & Related papers (2022-12-07T08:53:53Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Deep Reinforcement Learning Based Multi-Access Edge Computing Schedule
for Internet of Vehicle [16.619839349229437]
We propose a UAVs-assisted approach to help provide a better wireless network service retaining the maximum Quality of Experience (QoE) of the Internet of Vehicles (IoVs) on the lane.
In the paper, we present a Multi-Agent Graph Convolutional Deep Reinforcement Learning (M-AGCDRL) algorithm which combines local observations of each agent with a low-resolution global map as input to learn a policy for each agent.
arXiv Detail & Related papers (2022-02-15T17:14:58Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.