A V2X-based Privacy Preserving Federated Measuring and Learning System
- URL: http://arxiv.org/abs/2401.13848v1
- Date: Wed, 24 Jan 2024 23:11:11 GMT
- Title: A V2X-based Privacy Preserving Federated Measuring and Learning System
- Authors: Levente Alekszejenk\'o and Tadeusz Dobrowiecki
- Abstract summary: We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Future autonomous vehicles (AVs) will use a variety of sensors that generate
a vast amount of data. Naturally, this data not only serves self-driving
algorithms; but can also assist other vehicles or the infrastructure in
real-time decision-making. Consequently, vehicles shall exchange their
measurement data over Vehicle-to-Everything (V2X) technologies. Moreover,
predicting the state of the road network might be beneficial too. With such a
prediction, we might mitigate road congestion, balance parking lot usage, or
optimize the traffic flow. That would decrease transportation costs as well as
reduce its environmental impact.
In this paper, we propose a federated measurement and learning system that
provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V)
communication while also operating a federated learning (FL) scheme over the
Vehicle-to-Network (V2N) link to create a predictive model of the
transportation network. As we are yet to have real-world AV data, we model it
with a non-IID (independent and identically distributed) dataset to evaluate
the capabilities of the proposed system in terms of performance and privacy.
Results indicate that the proposed FL scheme improves learning performance and
prevents eavesdropping at the aggregator server side.
Related papers
- Joint Channel Selection using FedDRL in V2X [20.96900576250422]
Vehicle-to-everything (V2X) communication technology is revolutionizing transportation by enabling interactions between vehicles, devices, and infrastructures.
In this paper, we study the problem of joint channel selection, where vehicles with different technologies choose one or more Access Points (APs) to transmit messages in a network.
We propose an approach based on Federated Deep Reinforcement Learning (FedDRL), which enables each vehicle to benefit from other vehicles' experiences.
arXiv Detail & Related papers (2024-10-03T14:04:08Z) - FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles [5.803236995616553]
Federated learning is a promising solution to train sophisticated machine learning models in vehicular networks.
We introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments.
Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles.
arXiv Detail & Related papers (2024-06-05T20:06:59Z) - Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs
Using Reinforcement Learning [7.23389716633927]
We propose a novel reinforcement learning solution that prioritizes high bandwidth roads to meet a vehicles data transfer requirement.
We compare this approach to traffic-unaware and bandwidth-unaware baselines to show how much better it performs under heterogeneous traffic.
arXiv Detail & Related papers (2023-09-21T23:19:16Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Shared Information-Based Safe And Efficient Behavior Planning For
Connected Autonomous Vehicles [6.896682830421197]
We design an integrated information sharing and safe multi-agent reinforcement learning framework for connected autonomous vehicles.
We first use weight pruned convolutional neural networks (CNN) to process the raw image and point cloud LIDAR data locally at each autonomous vehicle.
We then design a safe actor-critic algorithm that utilizes both a vehicle's local observation and the information received via V2V communication.
arXiv Detail & Related papers (2023-02-08T20:31:41Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.