Machine Learning in Artificial Intelligence: Towards a Common
Understanding
- URL: http://arxiv.org/abs/2004.04686v1
- Date: Fri, 27 Mar 2020 19:09:57 GMT
- Title: Machine Learning in Artificial Intelligence: Towards a Common
Understanding
- Authors: Niklas K\"uhl, Marc Goutier, Robin Hirt, Gerhard Satzger
- Abstract summary: We aim to clarify the relationship between "machine learning" and "artificial intelligence"
We present a conceptual framework which clarifies the role of machine learning to build (artificial) intelligent agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The application of "machine learning" and "artificial intelligence" has
become popular within the last decade. Both terms are frequently used in
science and media, sometimes interchangeably, sometimes with different
meanings. In this work, we aim to clarify the relationship between these terms
and, in particular, to specify the contribution of machine learning to
artificial intelligence. We review relevant literature and present a conceptual
framework which clarifies the role of machine learning to build (artificial)
intelligent agents. Hence, we seek to provide more terminological clarity and a
starting point for (interdisciplinary) discussions and future research.
Related papers
- Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - A Review on Objective-Driven Artificial Intelligence [0.0]
Humans have an innate ability to understand context, nuances, and subtle cues in communication.
Humans possess a vast repository of common-sense knowledge that helps us make logical inferences and predictions about the world.
Machines lack this innate understanding and often struggle with making sense of situations that humans find trivial.
arXiv Detail & Related papers (2023-08-20T02:07:42Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in digital tools for Mathematics Education (ME)
It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications.
arXiv Detail & Related papers (2021-07-13T12:09:10Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Machine learning and deep learning [0.0]
Machine learning describes the capacity of systems to learn from problem-specific training data.
Deep learning is a machine learning concept based on artificial neural networks.
arXiv Detail & Related papers (2021-04-12T09:54:12Z) - Directions for Explainable Knowledge-Enabled Systems [3.7250420821969827]
We leverage our survey of explanation literature in Artificial Intelligence and closely related fields to generate a set of explanation types.
We define each type and provide an example question that would motivate the need for this style of explanation.
We believe this set of explanation types will help future system designers in their generation and prioritization of requirements.
arXiv Detail & Related papers (2020-03-17T04:34:29Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.