論文の概要: 3D Photography using Context-aware Layered Depth Inpainting
- arxiv url: http://arxiv.org/abs/2004.04727v3
- Date: Wed, 10 Jun 2020 14:21:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 03:21:08.251540
- Title: 3D Photography using Context-aware Layered Depth Inpainting
- Title(参考訳): テクスチャ対応層状深度塗布による3次元撮影
- Authors: Meng-Li Shih, Shih-Yang Su, Johannes Kopf, Jia-Bin Huang
- Abstract要約: 本稿では、1枚のRGB-D入力画像を3D写真に変換する方法を提案する。
学習に基づく着色モデルでは,新しい局所的な色と深度を隠蔽領域に合成する。
結果の3D写真は、モーションパララックスで効率よくレンダリングできる。
- 参考スコア(独自算出の注目度): 50.66235795163143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for converting a single RGB-D input image into a 3D photo
- a multi-layer representation for novel view synthesis that contains
hallucinated color and depth structures in regions occluded in the original
view. We use a Layered Depth Image with explicit pixel connectivity as
underlying representation, and present a learning-based inpainting model that
synthesizes new local color-and-depth content into the occluded region in a
spatial context-aware manner. The resulting 3D photos can be efficiently
rendered with motion parallax using standard graphics engines. We validate the
effectiveness of our method on a wide range of challenging everyday scenes and
show fewer artifacts compared with the state of the arts.
- Abstract(参考訳): 本稿では,1枚のRGB-D入力画像を3次元写真に変換する手法を提案する。
そこで我々は,明明な画素接続を基盤とする階層型奥行き画像を用いて,新しい局所色・奥行きコンテンツを空間的文脈認識でオクルード領域に合成する学習ベースの塗り込みモデルを提案する。
結果として得られる3D写真は、標準のグラフィックスエンジンを使用してモーションパララックスで効率よくレンダリングできる。
本手法の有効性を,課題の多い日常の場面で検証し,芸術的状況と比較して少ない工芸品を提示する。
関連論文リスト
- ConTex-Human: Free-View Rendering of Human from a Single Image with
Texture-Consistent Synthesis [49.28239918969784]
テクスチャに一貫性のあるバックビュー合成モジュールを導入し、参照画像コンテンツをバックビューに転送する。
また、テクスチャマッピングとリファインメントのための可視性対応パッチ整合性正規化と、合成したバックビューテクスチャの組み合わせを提案する。
論文 参考訳(メタデータ) (2023-11-28T13:55:53Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
スマートフォン1台でテクスチャ化されたメッシュを野生で取得するパイプラインを新たに提案する。
提案手法ではまず,RGBD支援構造を動きから導入し,フィルタした深度マップを作成できる。
我々は,高品質なメッシュを実現するニューラル暗黙表面再構成法を採用する。
論文 参考訳(メタデータ) (2023-03-27T10:07:52Z) - SLIDE: Single Image 3D Photography with Soft Layering and Depth-aware
Inpainting [54.419266357283966]
シングルイメージの3D写真は、視聴者が新しい視点から静止画を見ることを可能にする。
最近のアプローチでは、単分子深度ネットワークと塗装ネットワークを組み合わせることで、説得力のある結果が得られる。
単一画像3D撮影のためのモジュール・統一システムであるSLIDEについて述べる。
論文 参考訳(メタデータ) (2021-09-02T16:37:20Z) - Realistic Image Synthesis with Configurable 3D Scene Layouts [59.872657806747576]
本稿では,3次元シーンレイアウトに基づくリアルな画像合成手法を提案する。
提案手法では, セマンティッククラスラベルを入力として3Dシーンを抽出し, 3Dシーンの描画ネットワークを訓練する。
訓練された絵画ネットワークにより、入力された3Dシーンのリアルな外観の画像を描画し、操作することができる。
論文 参考訳(メタデータ) (2021-08-23T09:44:56Z) - GaussiGAN: Controllable Image Synthesis with 3D Gaussians from Unposed
Silhouettes [48.642181362172906]
対象物の粗い3次元表現を多視点2次元マスク監視から学習するアルゴリズムを提案する。
既存のボクセルを用いた物体再構成法とは対照的に,提案手法は生成した形状やポーズを表現することを学ぶ。
リアル照明を用いた合成データセットの結果を示し、対話的なポーズによるオブジェクト挿入を実証する。
論文 参考訳(メタデータ) (2021-06-24T17:47:58Z) - GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis [43.4859484191223]
近年,単一シーンの新規なビュー合成に成功している放射場生成モデルを提案する。
マルチスケールのパッチベース判別器を導入し,非姿勢の2次元画像からモデルを訓練しながら高解像度画像の合成を実演する。
論文 参考訳(メタデータ) (2020-07-05T20:37:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。