Interpreting Deep Neural Networks for Single-Lead ECG Arrhythmia
Classification
- URL: http://arxiv.org/abs/2004.05399v1
- Date: Sat, 11 Apr 2020 13:24:17 GMT
- Title: Interpreting Deep Neural Networks for Single-Lead ECG Arrhythmia
Classification
- Authors: Sricharan Vijayarangan, Balamurali Murugesan, Vignesh R, Preejith SP,
Jayaraj Joseph and Mohansankar Sivaprakasam
- Abstract summary: Cardiac arrhythmia is a prevalent and significant cause of mortality and morbidity among cardiac ailments.
Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale.
There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG.
The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model.
In the second approach, saliency is derived by learning the input deletion mask for the LSTM model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cardiac arrhythmia is a prevalent and significant cause of morbidity and
mortality among cardiac ailments. Early diagnosis is crucial in providing
intervention for patients suffering from cardiac arrhythmia. Traditionally,
diagnosis is performed by examination of the Electrocardiogram (ECG) by a
cardiologist. This method of diagnosis is hampered by the lack of accessibility
to expert cardiologists. For quite some time, signal processing methods had
been used to automate arrhythmia diagnosis. However, these traditional methods
require expert knowledge and are unable to model a wide range of arrhythmia.
Recently, Deep Learning methods have provided solutions to performing
arrhythmia diagnosis at scale. However, the black-box nature of these models
prohibit clinical interpretation of cardiac arrhythmia. There is a dire need to
correlate the obtained model outputs to the corresponding segments of the ECG.
To this end, two methods are proposed to provide interpretability to the
models. The first method is a novel application of Gradient-weighted Class
Activation Map (Grad-CAM) for visualizing the saliency of the CNN model. In the
second approach, saliency is derived by learning the input deletion mask for
the LSTM model. The visualizations are provided on a model whose competence is
established by comparisons against baselines. The results of model saliency not
only provide insight into the prediction capability of the model but also
aligns with the medical literature for the classification of cardiac
arrhythmia.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
In primary diagnosis and analysis of heart defects, an ECG signal plays a significant role.
This paper presents a model for the prediction of ventricular tachycardia arrhythmia using noise filtering, a unique set of ECG features, and a machine learning-based classifier model.
arXiv Detail & Related papers (2021-12-24T05:56:09Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Robust Interpretable Deep Learning Classifier for Heart Anomaly
Detection Without Segmentation [37.70077538403524]
We argue the importance of heart sound segmentation as a prior step for heart sound classification.
We then propose a robust classifier for abnormal heart sound detection.
Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.
arXiv Detail & Related papers (2020-05-21T06:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.